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Gravitational Waves 

> Nevertheless we prefer direct proofs by far

> Many localized sources are supposed to be there waiting for us...

> … and we are attempting to detect them (… and likely with success!!!)
MQCD MTeV MPeV

A huge range of frequencies
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Why should we be excited about milliHZ frequency?

complementary to collider informations
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LISA: Could be a new window  
on the Weak Scale
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 Which weak scale physics?  ⇒
transition 

● test of the dynamics of the phase transition

● reconstruction of the Higgs potential/study of new models of Electroweak
symmetry breaking (little higgs, gauge-higgs,composite higgs,..)

●  relevant to models of EW baryogenesis
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key quantities controlling the GW spectrum

 β : (duration of the phase transition)-1

α : vacuum energy density/radiation energy density

set by the tunneling probability

 α and β : entirely determined by the effective 
 scalar potential at high temperature

50 100 150 200 250 300
Φ

"5#106
"2.5#106

2.5#106
5#106

7.5#106
1#107
V!Φ,T$T_n"

anisotropic stress
Source of GW:

To evaluate the GWs emitted by turbulent motion in the primordial fluid and by a
magnetic field we need to determine the tensor-type anisotropic stresses of these sources.
They source the evolution equation for the GW perturbations,

ḧij + 2Hḣij + k2hij = 8⇥Ga2T (TT )
ij (k, t) . (5)

In this section we consider in all generality a relativistic source, and we solve the wave
equation in two cases: a long lasting source (i.e. many Hubble times), and a short lasting
one (i.e. significantly less than one Hubble time). We introduce the transverse traceless
tensor part of the energy momentum tensor of the source as

T (TT )
ij (k, t) = (⇤ + p)�̃ij(k, t) so that 8⇥Ga2T (TT )

ij (k, t) = 4H2�̃ij(k, t) , (6)

where we denote the dimensionless energy momentum tensor with a tilde: �̃ij(k, t) =
(PilPjm�1/2PijPlm)T̃lm(k, t). The projection tensor PilPjm�1/2PijPlm, with Pij = �ij�k̂ik̂j,
projects onto the transverse traceless part of the stress tensor. �̃ includes any time depen-
dence other than the basic radiation-like evolution. We assume that the source is active only
during the radiation-dominated era, where p = ⇤/3. During adiabatic expansion g(Ta)3 =
constant so that

⇤(t) =
⇤rad,0

a4(t)

⇤
g0

g(t)

⌅1/3

and a(t) ⇥ H0 ⇥1/2
rad,0

�
g0

g(t)

⇥1/6

t (7)

where g(t) is the number of relativistic degrees of freedom at time t.

2.1 Long-lasting source

Let us first concentrate on the more general case of a long lasting source. To solve Eq. (5)
we set H = 1/t, neglecting changes in the number of e⇤ective relativistic degrees of freedom.
In terms of the dimensionless variable x = kt Eq. (5) then becomes

h⇥⇥
ij + 2

h⇥
ij

x
+ hij =

4

x2
�̃ij . (8)

We consider a source that is active from time tin to time tfin, which in the long lasting case
can span a period of many Hubble times. For t > tfin, we match the solution of the above
equation to the homogeneous solution, �̃ij = 0. Assuming further that we are only interested
in modes well inside the horizon today, x ⇤ 1, the resulting GW energy power spectrum
becomes

|h⇥(k, x > xfin)|2 =
8

x2

⇧ xfin

xin

dx1

x1

⇧ xfin

xin

dx2

x2
cos(x2 � x1)�̃(k, x1, x2) x ⇤ 1 , (9)

x1 = kt1, x2 = kt2, and �̃(k, x1, x2) denotes the unequal time correlator of the source,

⇧�̃ij(k, t1)�̃
�
ij(q, t2)⌃ = (2⇥)3�(k� q)�̃(k, kt1, kt2) . (10)
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Gravity wave signals from 1st order 
cosmological phase transitions
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Figure 2: Graphical representation of
the dark QCD model. Baryon and
dark matter asymmetries are shared
via a mediator X

d

resulting in an
asymmetry in the stable dark baryons
p
d

, n
d

. The symmetric relic density
is annihilated e�ciently into dark pi-
ons, which eventually decay into SM
particles. The DM number density is
naturally of the same order as that of
baryons, so the correct DM relic den-
sity is obtained when the dark baryon
masses are in the 10 GeV range.
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Table 1: Particle content relevant for phenomenology. We use the Z
d

as a toy model and leave
detailed study to future work.

model for studying dark sector properties, but we leave detailed studies of its phenomenology at

the LHC to future work. The full particle content is summarized in Tab. 1.

For the scalar mediator with the hypercharge assignment in Tab. 1, the only allowed Yukawa

type coupling is of the form [12]
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Q̄
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q
j

X
d

+ h.c. (2)

where q
j

are the right-handed down-type SM quarks and  is a n
f

⇥3 matrix of Yukawa couplings.

Such couplings could in general lead to large flavor violating processes, but can be brought into

agreement with experimental bounds if dark flavor originates from the same dynamics as the SM

flavor structure or certainly if flavor symmetries are imposed on the dark sector [43–45]. For

definiteness, the fundamental Lagrangian which defines the model at high scales is given by

L � Q̄
d

i

(D/ � m
d

i
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+ L
SM

, (3)

where Gµ⌫

d

is the dark gluon field strength tensor, and the covariant derivatives contain the

couplings to the gauge fields.

For the vector mediator, we assume that it couples vectorially to SM and dark quarks with

couplings g
q

and g
d

. While here we assume that Z
d

originates from a U(1) symmetry broken at

the TeV scale, it could in principle also originate from a non-abelian horizontal symmetry as in

Ref. [31], where the Sphaleron associated with this gauge interaction is used to connect the dark

matter with the baryon asymmetry.
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FIG. 3. GW spectra ⌦(f)h2 for T⇤ = 0.1 GeV (SIMP), T⇤ = 3 GeV (CDM1, TH models), T⇤ = 300 GeV and T⇤ = 10 TeV
(CDM2 models). The upper (lower) edges of the contours correspond to � = H (� = 10H), and furthermore v = 1 and ⌦S⇤ = 0.1
for all curves. The projected reach of several planned GW detection experiments is shown (dashed lines).

sensitive to the tails of signals that peak at lower frequency,
like the T⇤ = 3 GeV band in Fig. 3. An interesting feature
here is that the frequencies shift to larger values with
(�/H), which partially compensates the overall (H/�)2

drop of the signal in the high frequency tails. Therefore
satellite based experiments have the potential to probe a
large range of PT temperatures from few GeV to 100s of
TeV.

A distinct feature of GW signals is that it directly
probes the gravitational e↵ects of new physics sectors,
whereas dark matter direct detection or collider experi-
ments have to rely on su�ciently strong non-gravitational
interactions of the dark sectors through mediator par-
ticles. All of the models introduced in Sec. remain
viable even if the masses or couplings of the mediators
are adjusted such that their detection becomes di�cult
in current collider and DM detection experiments. The
non-observation of new physics in the near future would
therefore not exclude the possibility of observing a GW
signal from a dark sector. This is very di↵erent from
e.g. models of strong EWPT [89–91], which could be in
trouble if no new physics is discovered at the LHC.

Finally it is worth noting that perturbative unitar-
ity constrains the mass of thermal DM to be below
110 TeV [92, 93], beyond the reach of the next generation
of collider experiments. For composite non-perturbative
DM this limit does not apply directly, instead a lower
bound on the radius of the extended object can be ob-
tained, R . (100 TeV)�1. It is reasonable to expect
the radius R to be of order of the inverse mass, which
again implies an upper bound on the DM mass of order
100 TeV. GW signals could therefore be a unique probe

of the thermal DM paradigm.

CONCLUSIONS

Models beyond the SM with a confining dark sector can
lead to unexpected phenomenological signatures. Here we
have explored the possibility to detect gravitational waves
due to a first order phase transition at the confinement
scale ⇤d. The main messages from this paper are:

• Di↵erent from QCD, dark sectors with QCD-like
interactions can undergo strong first order PTs, with
only mild constraints on the particle content.

• Several classes of new physics models that are cur-
rently being explored fulfil the criteria for first order
PTs. The physics problems these models are try-
ing to address, either dark matter or naturalness,
constrain the confinement scales and therefore the
temperature range of the phase transition.

• The GW signals originating from these dark phase
transitions are in the detectable frequency range
of future GW experiments, either at (E)LISA and
BBO for high scale models, or in PTA experiments
for the lower end of the spectrum.

Depending on other aspects of the model, GW signals
will either provide complementary information about the
models in question, or might even be the the best option
to find evidence for these models of new physics.

It will be interesting to further study the PT in strongly
coupled systems, to obtain a more precise understanding

[Schwaller 1504.07263]
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sity is obtained when the dark baryon
masses are in the 10 GeV range.
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sensitive to the tails of signals that peak at lower frequency,
like the T⇤ = 3 GeV band in Fig. 3. An interesting feature
here is that the frequencies shift to larger values with
(�/H), which partially compensates the overall (H/�)2

drop of the signal in the high frequency tails. Therefore
satellite based experiments have the potential to probe a
large range of PT temperatures from few GeV to 100s of
TeV.

A distinct feature of GW signals is that it directly
probes the gravitational e↵ects of new physics sectors,
whereas dark matter direct detection or collider experi-
ments have to rely on su�ciently strong non-gravitational
interactions of the dark sectors through mediator par-
ticles. All of the models introduced in Sec. remain
viable even if the masses or couplings of the mediators
are adjusted such that their detection becomes di�cult
in current collider and DM detection experiments. The
non-observation of new physics in the near future would
therefore not exclude the possibility of observing a GW
signal from a dark sector. This is very di↵erent from
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Finally it is worth noting that perturbative unitar-
ity constrains the mass of thermal DM to be below
110 TeV [92, 93], beyond the reach of the next generation
of collider experiments. For composite non-perturbative
DM this limit does not apply directly, instead a lower
bound on the radius of the extended object can be ob-
tained, R . (100 TeV)�1. It is reasonable to expect
the radius R to be of order of the inverse mass, which
again implies an upper bound on the DM mass of order
100 TeV. GW signals could therefore be a unique probe

of the thermal DM paradigm.

CONCLUSIONS

Models beyond the SM with a confining dark sector can
lead to unexpected phenomenological signatures. Here we
have explored the possibility to detect gravitational waves
due to a first order phase transition at the confinement
scale ⇤d. The main messages from this paper are:

• Di↵erent from QCD, dark sectors with QCD-like
interactions can undergo strong first order PTs, with
only mild constraints on the particle content.

• Several classes of new physics models that are cur-
rently being explored fulfil the criteria for first order
PTs. The physics problems these models are try-
ing to address, either dark matter or naturalness,
constrain the confinement scales and therefore the
temperature range of the phase transition.

• The GW signals originating from these dark phase
transitions are in the detectable frequency range
of future GW experiments, either at (E)LISA and
BBO for high scale models, or in PTA experiments
for the lower end of the spectrum.

Depending on other aspects of the model, GW signals
will either provide complementary information about the
models in question, or might even be the the best option
to find evidence for these models of new physics.

It will be interesting to further study the PT in strongly
coupled systems, to obtain a more precise understanding

Connecting Dark 
Matter and 
Baryogenesis



where T~ρkin~ρrad v2

ρGW ~ h2 /16πG
.

β2

H2
*ΩΩGW    = 

* ρtot2
ρkin2
κ2α2v4

β2

H2
*ΩΩGW   

*
 κ2  α2   v4∝ 3 parameters: α,β,v

Estimate of the GW energy density at the emission time

δGμν=8π GTμν  β2h~8πGT h~8πGT/β
.

 (α+1)2

 κ : fraction of vacuum 
energy transformed into 

bulk fluid motions



 Fraction of the critical energy density 
in GW today

where we used:

has to be big (≳         ) for detection10
−6



Expected shape of the GW spectrum 
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CAUSAL PROCESS: source is uncorrelated at scales larger than the peak scale
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What sources GWs at a thermal phase transition?

3

• Bubbles nucleate, most energy goes into plasma, then:

1. h2Ωφ: Bubble walls and shocks collide – ‘envelope phase’

2. h2Ωsw: Sound waves set up after bubbles have collided, before

expansion dilutes KE – ‘acoustic phase’

3. h2Ωturb: MHD turbulence – ‘turbulent phase’

• These sources then add together to give the observed GW power:

h2ΩGW ≈ h2Ωφ + h2Ωsw + h2Ωturb

• Each phase’s contribution depends on the nature of the phase transition.

• Now: explore steps 1-2 through two types of simulations:

1. The ‘envelope approximation’ → h2Ωφ

2. A field φ (‘Higgs’) coupled by friction to a fluid Uµ (‘plasma’) → h2Ωsw

[C
re

di
t:

D
av

id
 W

ei
r]
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Efficiency coefficient

bulk flow and 
hydrodynamics
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Bulk flow & hydrodynamics

-> all boils down to calculating the fluid velocity 
profile in the vicinity of the bubble wall

higgs vaccuum energy is converted into :

- heating
-bulk motion 
-kinetic energy of the higgs, 

fraction that goes 
into kinetic energy 

In general, c2
s depends on the EoS for the plasma, being c2

s = 1/3 in the bag case. In the
general case, c2

s will be ξ-dependent, although in many cases of interest deviations from 1/3
will be small.

Eq. (27) can then be solved (with the appropriate boundary conditions) to yield the
velocity profile v(ξ) of the plasma. Subsequently, eqs. (26) can be integrated to yield

w(ξ) = w0 exp

[

∫ v(ξ)

v0

(

1 +
1

c2
s

)

γ2 µ dv

]

. (29)

In the calculation of the gravitational radiation produced in the phase transition one
needs to compute the kinetic energy in the bulk motion of the plasma. We have now all
ingredients necessary to perform such calculation. The ratio of that bulk kinetic energy over
the vacuum energy gives the efficiency factor κ as

κ =
3

ϵξ3
w

∫

w(ξ)v2γ2 ξ2 dξ , (30)

where ξw is the velocity of the bubble wall. Notice that this definition coincides with the
expression used in the gravitational wave literature, that is given by κ = 3

ϵR3
w

∫

w v2γ2 R2dR,

but differs from the definition used in ref. [5] by a factor ξ3
w.

We also numerically check energy conservation: Integration of T00 over a region larger
than the bubble (including the shock front) is constant in time, giving

∫
[

(γ2 −
1

4
)w −

3

4
wN

]

ξ2dξ =
ϵ

3
ξ3
w, (31)

where wN denotes the enthalpy at nucleation temperature far in front of the wall. This
implies that the energy which is not transformed into kinetic bulk motion, but is used
instead to increase the thermal energy, is

1 − κ =
3

ϵξ3
w

∫

3

4
(w − wN)ξ2dξ =

3

ϵξ3
w

∫

(e − eN)ξ2dξ. (32)

3 Detonations, deflagrations and hybrids

We can now use the previous fluid equations to describe the different kinds of solutions for
the motion of the plasma disturbed by the moving phase transition wall. In the discussion
below, the sound velocity in the plasma plays a very relevant role. This velocity will in general
depend on ξ and it is convenient to distinguish its asymptotic values in the symmetric and
broken phases. We denote those two velocities by c±s . In many cases, we expect the bag EoS
to hold in the symmetric phase and therefore c+

s = 1/
√

3.
Before embarking in the discussion of the different types of velocity profiles, it proves use-

ful to study first in more detail the profile eq. (27) without worrying about physical boundary
conditions. The different curves in Fig. 2 are obtained by solving for ξ as a function of v
[instead of the more physically meaningful v(ξ), the plasma velocity profile] using arbitrary
boundary conditions and setting cs = 1/

√
3. This procedure has the advantage that ξ(v) is

8

fluid velocity

wall velocity

fraction κ of vacuum energy density ε 
converted into kinetic energy

� =
⇥

⇤rad

�

H
=

1
T

dS

dT



3.1 Detonations

A pictorial representation of a typical detonation is depicted in Fig. 3, right plot. The
corresponding velocity profile is as in Fig. 4, lower left plot. More precisely, in detonations
the phase transition wall moves at supersonic speed ξw (ξw > c+

s ) hitting fluid that is at rest
in front of the wall. In the wall frame, the symmetric-phase fluid is moving into the wall at
v+ = ξw and entering the broken phase behind the wall where it slows down so that v− < v+.
In the rest frame of the bubble center, the fluid velocity right after the wall passes jumps to
v(ξw) = µ(v+, v−) (the Lorentz transformation (28) from the frame of the wall to the rest
frame of the center of the bubble) and then slows down until it comes to a stop, at some
ξ < ξw, forming a rarefaction wave behind the wall. From the previous discussion we know
that v will go to zero smoothly at ξ = c−s .

deflagration

ξ
w

 < c
s

ξ
w

 > c
s

ξ
w

 > c
s

hybrid detonation

Figure 3: Pictorial representation of expanding bubbles of different types. The black circle is the
phase interface (bubble wall). In green we show the region of non-zero fluid velocity.

In order to obtain a consistent solution in the region c−s < ξ < ξw, one needs 0 < ∂ξv < ∞
which, using eq. (27), requires µ(ξ) > µ(ξw) ≥ c−s behind the wall. Consequently, detonation
solutions are confined to the lower right corner of fig. 2, as indicated. Boosting to the wall
frame this implies v− ≥ c−s , since v− = µ(ξw, v(ξw)). Therefore, detonations can be divided
into Jouguet detonations (v− = c−s ) and weak detonations (v− > c−s ); strong detonations
(v− < c−s ) are not consistent solutions of the fluid equations, see fig. 1.2

Fig. 4 shows also the enthalpy profile (bottom right) for a detonation. Concerning this
profile, remember that the matching conditions across the wall give

wN = w+ = w−

(

1 − ξ2
w

ξw

) (

v−
1 − v2

−

)

, (34)

where the subscript N denotes the plasma at the temperature of nucleation far in front of

2As c−
s

can be different from 1/
√

3 in the most general case, the forbidden region v
−

< c−
s

, shaded in
Fig. 1, will be shifted in those cases.
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Figure 4: Examples of the fluid velocity (in the plasma rest frame), enthalpy and entropy profiles
for a subsonic deflagration, a deflagration with rarefaction wave (hybrid) and a detonation, for
a−/a+ = 0.85. The bubble of broken phase is in gray. For detonations, the fluid kinetic energy
and thermal energy are concentrated near the wall but behind it i.e. inside the bubble, while they
are located outside (mostly outside) of the bubble for deflagrations (hybrids).

the wall. Then, eq. (29) transforms into

w(ξ) = wN

(

ξw

1 − ξ2
w

)(

1 − v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2
s

)

γ2 µ dv

]

. (35)
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Depending on the boundary conditions at the bubble front, there are three possible solutions:

detonations  -rarefaction wave
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Figure 10: Contour plots of κ and ξw as functions of η and αN (for a−/a+ = 0.85). The blue lines
mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
v(+∞) = v+ = ξw > v(−∞) = v− and one should choose T (+∞) = TN . Deflagrations
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GW spectrum due to bubble collisions from 
numerical simulations: high frequency slope
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FIG. 3: Several spectra of gravitational radiation according to the old and new formulas. The

parameters are taken from ref. [8] and given in table I with α decreasing from top to bottom. In

the shaded region, the sensitivity of LISA and BBO is expected to drop considerably.

set α β/H T∗ / GeV

1 0.03 1000 130

2 0.05 300 110

3 0.07 100 85

4 0.1 60 80

5 0.15 40 75

6 0.2 30 70

TABLE I: Sets of parameters used in Fig. 3.

IV. CONCLUSIONS

We reexamined the spectrum of gravitational wave radiation generated by bubble col-

lisions during a first-order phase transition in the envelope approximation. Using refined

numerical simulations, our main finding is that the spectrum falls off only as f−1.0 at high

frequencies, considerably slower than appreciated in the literature. This behavior is most

probably related to the many small bubbles nucleated at a later stage of the phase tran-

sition [31]. This result is especially interesting in the light of recent investigations [7, 8]

that indicate that in the case of a first-order electroweak phase transition (obtained by a

Kosowsky et al, ’93 Huber-Konstandin,’08
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Figure 1: Deflagration (left) and detonation (right). In deflagration vwall < vsound, and the growing bubble
wall pushes the fluid in front of it. In detonation vwall > vsound, and the bubble wall drags the fluid behind it.

Figure 2: Fluid kinetic energy density at t = 500/Tc, 1000/Tc and 1500/Tc, at h = 0.15Tc, corresponding
to the growth phase of the bubbles, end of bubble collisions and after the bubbles have vanished. The shock
waves caused by the bubbles remain for a long time after the transition has completed.

3. Results

We show here results from simulations corresponding to relatively weak transition with latent
heat L = (9/40)T 4

c . The phenomenological field-fluid coupling parameter is set to h/Tc = 0.1,
0.15 and 0.2. For the detailed simulation parameters we refer to [26].

When h is small, the coupling between the field and the fluid is small, allowing the bubble
wall to propagate quickly. The moving bubble wall causes fluid flows. The three values of h
are chosen so that we obtain three different bubble growth types: at h = 0.1 the wall velocity is
vwall > vsound = 1/

p
3 (detonation), at h = 0.15 vwall ⇡ vsound (Jouguet) and at h = 0.2 vwall < vsound

(deflagration). The moving bubble wall causes fluid flows: in deflagration, the wall pushes a thick
layer (thickness µ bubble size) of fluid ahead of itself, whereas in detonation the bubble wall drags
a layer of fluid behind it. This is illustrated in Figure 1.

In Figure 2 we show three snapshots of fluid kinetic energy density from a simulation at
h = 0.15, taken at the bubble growth stage, collision stage and after the bubbles have vanished.
During the growth stage the kinetic energy is concentrated near the growing bubble walls. Af-
ter the bubbles have collided the bubble walls vanish, but the fluid flow continues propagating as
spherical compression waves, i.e. sound.

The contribution of the field and fluid to the stress-energy tensor (and hence gravitational
waves) can be quantified by introducing RMS fluid velocity Ūf and the equivalent field quantity:

(ē + p̄)Ū2
f =

1
V

Z
dV tfluid

ii , (ē + p̄)Ū2
f =

1
V

Z
dV tfield

ii . (3.1)
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Figure 3: Left: the relative contribution from the field (Ūf ) and fluid (Ū f ) to the energy-momentum tensor.
Right: the gravitational radiation power rgw as a function of time.
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Figure 4: Gravitational wave power spectra from detonation (left) and deflagration (right). The development
of characteristic power laws can be observed.

Here ē and p̄ are average energy density and pressure. In Figure 3 we see that the field and fluid
contributions are comparable only during the bubble growth and collision stages. After the bubbles
have collided, Ūf ⇡ 0 but the fluid kinetic energy remains approximately constant.1 This implies
that the gravitational wave production also remains active for much longer than the transition time
itself; indeed, it can be estimated to continue for up to Hubble time [26]. From Figure 3 we can
also see that the gravitational wave power grows linearly with an universal slope:

rGW = t C GL f (ē + p̄)2Ū4
f , with C = 0.8±0.2 (3.2)

Here L f is characteristic flow length scale. We can estimate that the total power is up to two orders
of magnitude stronger than the estimate from the envelope approximation.

Finally, in Figure 4 we show an example of the development of the gravitational wave power
spectra from detonation and deflagration. We see the development of characteristic power laws,
with possibly non-universal power. For weak deflagration, we observe rGW µ k�3 on the UV end
of the spectrum, deviating strongly from the prediction from the envelope approximation (r µ k�1).

1The slow decrease in Ū f is due to numerical viscosity of our simulation; the physical viscosity is negligible [26].
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Figure 2: Example of GW spectra in Case 1, for fixed T⇤ = 100 GeV, ↵ = 0.5, vw = 0.95, and

varying �/H⇤: from left to right, �/H⇤ = 1 and �/H⇤ = 10 (top), �/H⇤ = 100 and �/H⇤ = 1000

(bottom). The black line denotes the total GW spectrum, the green line the contribution from

sound waves, the red line the contribution from MHD turbulence. The shaded areas represent the

regions detectable by the C1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations.

interplay among the contributions of the di↵erent sources, which in turn are determined by

the specific dynamics of the PT. On the one hand this is encouraging, since it opens up

the possibility of investigating the dynamics of the PT. On the other hand, this is probably

feasible only in the most optimistic PT scenarios and for the best eLISA configurations. Note

that the highest GW signals are expected for runaway bubbles in vacuum (Case 3 above) for

which the GW spectrum has the simplest shape, being determined only by the scalar field

contribution.

3.3 Sensitivity to a First-Order Phase Transition

With the eLISA sensitivity to a stochastic GW background determined, we would like to

assess eLISA’s ability to detect GWs from primordial first-order PTs in a way that is as

model-independent as possible. We have shown in the previous section that the predictions
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Name C1 C2 C3 C4

Full name N2A5M5L6 N2A1M5L6 N2A2M5L4 N1A1M2L4

# links 6 6 4 4

Arm length [km] 5M 1M 2M 1M

Duration [years] 5 5 5 2

Noise level N2 N2 N2 N1

Table 1: Properties of the representative eLISA configurations chosen for this study. The

corresponding sensitivity curves are shown in Figure 1. More details on these configurations

and their sensitivity curves can be found in Ref. [3] and Ref. [31] respectively.

For the C1-C4 configurations, the resulting eLISA sensitivity to a stochastic GW back-

ground is shown in Figure 1. The most promising clearly appears to be C1, which corresponds

to the old LISA configuration: it has 6 links, 5 million km arm length, a duration of 5 years

and noise level corresponding to that expected to be found by the LISA pathfinder (labeled

as N2 and henceforth called “LISA pathfinder expected”). The least sensitive is C4, with

4 links, 1 million km arm length, a duration of 2 years and noise level corresponding to 10

times larger than expected (N1, also dubbed “LISA pathfinder required”). For the interme-

diate configurations, we have fixed the duration to five years and the noise level to LISA

Pathfinder expected, since these two characteristics are likely achievable. An open question,

which we would like to answer with this analysis, is whether it is more e�cient to add a

pair of laser links or to increase the arm length for the purpose of probing the occurrence

of first-order PTs in the early Universe. The outcome, as we will see, is that adding a pair

of laser links leads to a larger gain in sensitivity than increasing the arm length from 1 to 2

million km.

To assess the detectability of the GW signal, we consider the signal-to-noise ratio [32],

SNR =

s

T
Z f

max

f
min

df


h2⌦GW(f)

h2⌦Sens(f)

�2
, (29)

where h2⌦Sens(f) denotes the sensitivity of a given eLISA configuration and T is the duration

of the mission in years [31]. Whenever SNR is larger than a threshold SNRthr, the signal

h2⌦GW(f) can be detected. Quantifying SNRthr is not an easy task. We briefly describe how

this can be done here, referring the interested Reader to Ref. [31] for more details.

Applying a Bayesian method, Refs. [33, 34] found that the old LISA configuration over
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Figure 1: Sensitivity curves of the C1-C4 configurations given in Table 1 compared with a typical

GW signal. We have chosen the signal predicted in the Higgs portal scenario described in Section

4.2.2, with benchmark values T⇤ = 59.6, ↵ = 0.17, �/H⇤ = 12.54, �⇤/T⇤ = 4.07 (see Table 3).

one year can detect a white-noise stochastic background at the level of h2⌦L6
GW = 1⇥ 10�13.

This sensitivity can be achieved by exploiting the fact that, with three interferometer arms

(i.e. three pairs of laser links), it is possible to form two (virtually) noise-independent detec-

tors, in which the noise is uncorrelated whereas the GW signal is correlated. This technique

is safe and robust, although it remains to be tested with realistic noise levels. On the other

hand, this technique cannot be applied to the two-arm configurations, and the level of de-

tectable GW background is degraded. With the same Bayesian method, and assuming good

prior knowledge of the noise, Ref. [34] finds that with a four-link but otherwise LISA-like

configuration over one year one can detect a white-noise stochastic background at the level

of h2⌦L4
GW = 3.5⇥ 10�13.

For the present detection analysis, we use the above results and convert them into cor-

responding values of SNRthr. We compare the h2⌦L6
GW and h2⌦L4

GW detection levels with

the power law sensitivity curve for each six-link (respectively, four-link) configuration. The

power law sensitivity curve is a concept developed in [32] with the aim of accounting for

the improvement in the usual sensitivity curves of a GW detector that comes from the

broadband nature of a stochastic signal. The curve is given by the envelope of power laws

⌦�(f/fref)� that can be detected with SNR = 1, varying �. For each eLISA configuration,

we compute the power law sensitivity curve, and the SNR corresponding to the detection

levels h2⌦L6
GW and h2⌦L4

GW. To be conservative, for the four-link configurations we increase the

16



Detectable regions at eLISA for different types of PT

Figure 4: Projected eLISA sensitivity to Case 1: non-runaway relativistic bubble walls. Results

are displayed for four values of T⇤ (indicated) and the four eLISA configurations described in Table

1. The detectable region is shaded. Also shown are benchmarks from various specific models,

discussed in Section 4. All other parameters are as described in the text. Note that the values of

T⇤ chosen correspond only approximately to the precise values for the benchmark points. The GW

signal is given primarily by the contribution of sound waves (turbulence is negligible for the chosen

value of ✏).

22

Figure 5: Projected eLISA sensitivity to Case 2: runaway bubble walls with finite ↵. Results are

displayed for four values of T⇤ and ↵1 (indicated) and the four eLISA configurations described in

Table 1. The detectable region is shaded. Also shown are benchmarks from various specific models,

discussed in Section 4. All other parameters are as described in the text. Note that the values of

T⇤ and ↵1 chosen correspond only approximately to the precise values for the benchmark points

(as described in the text). The GW signal is given primarily by the contribution of the scalar field

and of the sound waves.
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Figure 6: Projected eLISA sensitivity to Case 3: runaway bubble walls in vacuum. The re-

gion detectable by each configuration (c.f. Table 1) is shaded. Also pictured are the predictions

corresponding to the benchmark points discussed in Section 4 that fall under Case 3.

3.4 Summary of Model-Independent Projections

The model-independent analysis of this section shows that the six-link configurations provide

the most coverage to first-order cosmological phase transitions. The configuration with four

links and 2 million km arm length is, however, not much worse than that with six links and

1 million km arm length. Note that much better knowledge of the instrumental noise and

astrophysical backgrounds would be needed to use the four-link configurations, since one

cannot cross-correlate the signal of the two e↵ective, coincident detectors that the six-link

configurations provide. This is accounted for in the above analysis through the technique

explained in Section 3.1, and in particular through the increase of SNRthr. We stress that

our comparison between the four- and six-link configurations would change substantially if

the analysis of Ref. [34] were found to be unfeasible in practice, and/or the assumed prior

knowledge of the noise were unachievable.

We now move on to consider how specific models map on to the model-independent

parameter space we have been discussing so far.
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The temperature T⇤ in this situation is given approximately by the reheat temperature

after percolation, T⇤ ⇡ Treh. So far, in most of our expressions we have assumed T⇤ ⇡ Tn ⇡
Treh, as is appropriate for transitions in a radiation-dominated epoch and without significant

reheating. However, in the vacuum case, one instead generally expects Tn ⌧ Treh ⇡ T⇤, since

Treh is governed by the vacuum energy released during the transition. The definitions of ↵ and

�/H⇤ should be adjusted accordingly. In particular, for vacuum transitions, Equations (3)

and (4) should be replaced by

�

H⇤
=

H(Tn)

H⇤
Tn

dS

dT

����
Tn

, ↵ =
⇢vac

⇢rad(Tn)
. (27)

Notice that for fast reheating one obtains H(Tn) ' H⇤ even though Tn ⌧ T⇤. This is because

energy conservation ensures that the vacuum energy that dominates H(Tn) is transformed

without loss into the radiation energy that dominates H⇤.

As Tn ! 0, ↵ ! 1 and the ↵ dependence drops out of the predicted GW signal in this

scenario (c.f. Eq. (7)). Also, in this limit, only the Higgs field contribution is significant,

from which it follows that

h2⌦GW ' h2⌦� , (28)

where h2⌦� is given in Eq. (12), and Eq. (7) with � = 1, vw = 1. There is no significant

plasma contribution in this case, by definition. Note that, if the reheating of the Standard

Model sector is slow, there will be a period of matter domination immediately following the

transition, which would change the redshift, and hence Eq. (10). We will not consider this

particular case further.

3 eLISA Sensitivity

3.1 Detection Threshold

In this analysis we consider four representative configurations for eLISA, which we name C1-

C4 and which are listed in Table 1. The corresponding eLISA sensitivity curves can be found

in Ref. [3] for the target GW source, massive black hole binaries. On the other hand, here

we are interested in a stochastic background of GWs, which is statistically homogeneous and

isotopic. The purpose of this section is to briefly explain how one can obtain sensitivity curves

which correctly represent the prospects for detecting a stochastic GW background with

eLISA for a given configuration (more details will be presented in an upcoming study [31]).
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Predictions depend on the particle Physics Model

What is the nature of the Electroweak Phase Transition?
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- so far, no baryogenesis mechanism that  
 works with only SM CP violation (CKM phase)

double failure:

- lack of out-of-equilibrium condition

remains unexplained within the Standard Model⌘

proven for standard  
EW baryogenesis

attempts in cold EW 
baryogenesis Brauner, Taanila,Tranberg,Vuorinen ’12 
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Figure 1. Leptoquark decays.
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Figure 2. Radiative corrections to leptoquark decays important for CP-violation.

where δCP is the asymmetry in leptoquark decays,

δCP =
Γ(X → qq) − Γ(X̄ → q̄q̄)

Γtot

, (4)

Γtot is the total width of X, Neff is the number of effectively massless degrees of freedom, and
Smacro is a factor taking into account the kinetics of the leptoquark decays.

The progress over last 30 years is quite impressive: one can distinguish more than 44 different
ways to create baryons in the Universe! Here is the list taken from the titles of numerous papers
on this subject:

1. GUT baryogenesis. 2. GUT baryogenesis after preheating. 3. Baryogenesis from
primordial black holes. 4. String scale baryogenesis. 5. Affleck-Dine (AD) baryogenesis. 6.
Hybridized AD baryogenesis. 7. No-scale AD baryogenesis. 8. Single field baryogenesis. 9.
Electroweak (EW) baryogenesis. 10. Local EW baryogenesis. 11. Non-local EW baryogenesis.
12. EW baryogenesis at preheating. 13. SUSY EW baryogenesis. 14. String mediated EW
baryogenesis. 15. Baryogenesis via leptogenesis. 16. Inflationary baryogenesis. 17. Resonant
leptogenesis. 18. Spontaneous baryogenesis. 19. Coherent baryogenesis. 20. Gravitational
baryogenesis. 21. Defect mediated baryogenesis. 22. Baryogenesis from long cosmic strings.
23. Baryogenesis from short cosmic strings. 24. Baryogenesis from collapsing loops. 25.
Baryogenesis through collapse of vortons. 26. Baryogenesis through axion domain walls. 27.
Baryogenesis through QCD domain walls. 28. Baryogenesis through unstable domain walls.
29. Baryogenesis from classical force. 30. Baryogenesis from electrogenesis. 31. B-ball
baryogenesis. 32. Baryogenesis from CPT breaking. 33. Baryogenesis through quantum gravity.
34. Baryogenesis via neutrino oscillations. 35. Monopole baryogenesis. 36. Axino induced
baryogenesis. 37. Gravitino induced baryogenesis. 38. Radion induced baryogenesis. 39.
Baryogenesis in large extra dimensions. 40. Baryogenesis by brane collision. 41. Baryogenesis
via density fluctuations. 42. Baryogenesis from hadronic jets. 43. Thermal leptogenesis. 44.
Nonthermal leptogenesis.

2

Shaposhnikov, 

Baryogenesis

Mikhail Shaposhnikov

Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland

E-mail: Mikhail.Shaposhnikov@epfl.ch

Abstract. We will discuss different mechanisms for baryogenesis with special emphasis to
those of them that can be experimentally tested.

1. Introduction
Baryogenesis gives a possible answer to the following question: Why there is no antimatter in
the Universe? Or, on quantitative level: Why the observed baryon to entropy ratio is

nB

s
≃ (8.4 − 8.9) × 10−11 . (1)

A (qualitative) solution to this problem is known already for quite some time [1] (see also [2]):
the Universe is charge asymmetric because it is expanding (the existence of arrow of time, in
Sakharov’s wording), baryon number is not conserved and the discrete CP-symmetry is broken.
If all these three conditions are satisfied, it is guaranteed that some excess of baryons over
anti-baryons will be generated in the course of the Universe evolution. However, to get the sign
and the magnitude of the baryon asymmetry of the Universe (BAU) one has to understand the
precise mechanism of baryon (B) and lepton (L) number non-conservation, to know exactly how
the arrow of time is realized and what is the relevant source of CP-violation.

Back in 1977-1979 we thought we knew the origin of the baryon asymmetry of the Universe
[3, 4, 5]. The baryon and lepton number non-conservation was related to Grand Unified Theories
(GUT) of strong, weak and electromagnetic interactions. Since the scale of GUT MX ∼ 1015

GeV is close to the Planck scale MP ∼ 1019 GeV, the rate of Universe expansion was high at this
moment, leading to deviations from thermal equilibrium in the leptoquark decays. The GUT
structure in general allows a number of CP-violating phases in leptoquak coupling to quark and
leptons.

To find the baryonic asymmetry in a specific GUT, one considers B-violating leptoquark
decays (see Fig. 1)

X → qℓ, q̄q̄ and X̄ → q̄ℓ̄, qq (2)

and computes radiative corrections to the amplitudes (see Fig. 2), necessary for CP-violating
effects to show up. The baryon asymmetry is given by

nB

nγ
= ∆ ∼

1

Neff

δCP · Smacro, (3)

Journal of Physics: Conference Series 171 (2009) 012005

1

Plethora of baryogenesis models taking place at all possible scales
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Two leading candidates 
for baryogenesis:

--> Leptogenesis by out of equilibrium decays of RH 
neutrinos before the EW phase transition

--> Baryogenesis at a first-order EW phase transition

2

FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.

W ϵ, contracting [∂µT µν ]
fluid

with Uν yields

Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
∂V

∂φ
W (φ̇+ V i∂iφ)

= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ϵ+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ϵ+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
∣

∣

∣
ḣlm(t,k)

∣

∣

∣

2

. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw ≃
0.71, and the others weak deflagrations with vw ≃ 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw ≃ 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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Baryogenesis  
at a first-order  

EW phase transition
2

FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.
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Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
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= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ϵ+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ϵ+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
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. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw ≃
0.71, and the others weak deflagrations with vw ≃ 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw ≃ 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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Matter Anti-matter asymmetry of the universe

The Electroweak Baryogenesis Miracle:

for baryon number is induced. Such a source can be generated if µt,1 ̸= µtc,1. It
leads to spurious effects in the baryon asymmetry. Its appearance shows that an
inconsistent approximation pattern has been used.

We can now compute the chemical potential of left-handed quarks, µBL
= µq1,2+

µq2,2 + (µt,2 + µb,2)/2. Assuming again baryon number conservation, we obtain

µBL
=

1

2
(1 + 4K1,t)µt,2 +

1

2
(1 + 4K1,b)µb,2 − 2K1,tµtc,2. (32)

The baryon asymmetry is then given by [7]

ηB =
nB

s
=

405Γws

4π2vwg∗T

∫ ∞

0

dz µBL
(z)e−νz, (33)

where is Γws the weak sphaleron rate and ν = 45Γws/(4vw). The effective number
of degrees of freedom in the plasma is g∗ = 106.75. In eq. (33) the weak sphaleron
rate has been suddenly switched off in the broken phase, z < 0. The exponential
factor in the integrand accounts for the relaxation of the baryon number if the wall
moves very slowly. Note that we have performed our computation in the wall frame.
Therefore, strictly speaking eq. (33) gives the baryon asymmetry in that frame. To
first order in vw this is identical to the baryon asymmetry in the plasma frame.

In our numerical evaluations we use the following values for the weak sphaleron
rate [21], the strong sphaleron rate [22], the top Yukawa rate [20], the top helicity
flip rate, the Higgs number violating rate [20], the quark diffusion constant [4] and
the Higgs diffusion constant [7]

Γws = 1.0 × 10−6T, Γss = 4.9 × 10−4T,

Γy = 4.2 × 10−3T, Γm =
m2

t (z, T )

63T
,

Γh =
m2

W (z, T )

50T
, Dq =

6

T
,

Dh =
20

T
. (34)

We use eq. (26) to infer the total interaction rates from the diffusion constants.
In this procedure we evaluate the thermal averages at z = 0, i.e. in the center of
the bubble wall. The W scatterings we approximate as ΓW = Γtot

h . The bottom
quark is taken as massless, and the Higgses we count as 2 massless complex degrees
of freedom. The rates of eq. (34) have been computed in the plasma frame. We
assume that, to leading order in vw, they can also be used in the wall frame.

To demonstrate the relevance of the various contributions to the full transport
equations, we compare the baryon asymmetry computed in different approximations
for two typical parameter settings. We take |xt| = 1 and maximal CP violation
sin ϕt = 1. Fig. 1 shows ηB as a function of the wall velocity vw. The other
parameters we have chosen as ξ = 1.5, M = 6 and Lw = 8. These values correspond
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In our numerical evaluations we use the following values for the weak sphaleron
rate [21], the strong sphaleron rate [22], the top Yukawa rate [20], the top helicity
flip rate, the Higgs number violating rate [20], the quark diffusion constant [4] and
the Higgs diffusion constant [7]
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We use eq. (26) to infer the total interaction rates from the diffusion constants.
In this procedure we evaluate the thermal averages at z = 0, i.e. in the center of
the bubble wall. The W scatterings we approximate as ΓW = Γtot

h . The bottom
quark is taken as massless, and the Higgses we count as 2 massless complex degrees
of freedom. The rates of eq. (34) have been computed in the plasma frame. We
assume that, to leading order in vw, they can also be used in the wall frame.

To demonstrate the relevance of the various contributions to the full transport
equations, we compare the baryon asymmetry computed in different approximations
for two typical parameter settings. We take |xt| = 1 and maximal CP violation
sin ϕt = 1. Fig. 1 shows ηB as a function of the wall velocity vw. The other
parameters we have chosen as ξ = 1.5, M = 6 and Lw = 8. These values correspond
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for baryon number is induced. Such a source can be generated if µt,1 ̸= µtc,1. It
leads to spurious effects in the baryon asymmetry. Its appearance shows that an
inconsistent approximation pattern has been used.

We can now compute the chemical potential of left-handed quarks, µBL
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µq2,2 + (µt,2 + µb,2)/2. Assuming again baryon number conservation, we obtain
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1
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The baryon asymmetry is then given by [7]
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rate has been suddenly switched off in the broken phase, z < 0. The exponential
factor in the integrand accounts for the relaxation of the baryon number if the wall
moves very slowly. Note that we have performed our computation in the wall frame.
Therefore, strictly speaking eq. (33) gives the baryon asymmetry in that frame. To
first order in vw this is identical to the baryon asymmetry in the plasma frame.

In our numerical evaluations we use the following values for the weak sphaleron
rate [21], the strong sphaleron rate [22], the top Yukawa rate [20], the top helicity
flip rate, the Higgs number violating rate [20], the quark diffusion constant [4] and
the Higgs diffusion constant [7]
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We use eq. (26) to infer the total interaction rates from the diffusion constants.
In this procedure we evaluate the thermal averages at z = 0, i.e. in the center of
the bubble wall. The W scatterings we approximate as ΓW = Γtot

h . The bottom
quark is taken as massless, and the Higgses we count as 2 massless complex degrees
of freedom. The rates of eq. (34) have been computed in the plasma frame. We
assume that, to leading order in vw, they can also be used in the wall frame.

To demonstrate the relevance of the various contributions to the full transport
equations, we compare the baryon asymmetry computed in different approximations
for two typical parameter settings. We take |xt| = 1 and maximal CP violation
sin ϕt = 1. Fig. 1 shows ηB as a function of the wall velocity vw. The other
parameters we have chosen as ξ = 1.5, M = 6 and Lw = 8. These values correspond
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source of order 1 then we get just the right baryon asymmetry!
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 A strong 1st order PT leads to sizable deviations in hgg and 
hƔƔ  couplings  and therefore in Higgs production rate and 

decays in ƔƔ

e.g: Light stop scenario in Minimal 
Supersymmetric Standard Model

The most common way to obtain a strongly 1st order phase 
transition by inducing a barrier in the effective potential is 

due to thermal loops of BOSONIC modes.
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Figure 1. The four methods of obtaining a strongly first order phase transition by inducing a
barrier in the thermal effective potential, which are discussed in this paper. The framed expressions
indicate which term is responsible for the rise or fall of V

e↵

.

freedom. One subset of enhanced symmetries is based on continuous symmetries (or the
parametric limit in which the discrete symmetry enlarges into a continuous symmetry).
One way to understand how the Higgs data rules out this subset is to note that the Nambu-
Goldstone bosons associated with the spontaneously broken continuous symmetries have
couplings to Higgs determined by the kinetic part of the action, and this coupling-induced
decay rate is unsuppressed when the Higgs mass is of the order of v = 246 GeV. Hence,
the Higgs decay to the Nambu-Goldstone bosons exceeds the experimental limits on exotic
decays of the Higgs.

The tension that we present in most of the categorization points to the enhanced dis-
crete symmetry point [14] being the parametric space marker having intuitively the largest
set of model building possibilities for electroweak baryogenesis.

In addition to constraints coming from the SM-likeness of the Higgs, it is also interest-
ing to consider the “anomalies” which may point to beyond-the-Standard-Model (BSM)
physics. One of the most promising anomalies observed at the LHC is an excess of events
in the loop-induced diphoton decay channel of the Higgs. If the excess can be attributed
to the presence of a BSM scalar field running in the loop, then we utilize our classification
to argue that there is a general tension with electroweak baryogenesis if this scalar field is

– 4 –

Very constrained by LHC !

One adds new scalar coupled to the Higgs 

Katz, Perelstein ’14 
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The (former) EW baryogenesis window in the Minimal Supersymmetric  
Standard Model: A Stop-split supersymmetry spectrumThe MSSM EWBG Spectrum
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• Main MSSM source: Higgsinos and Gauginos.
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Easily seen in effective field theory approach:
 Add a non-renormalizable Φ6 term to the  SM Higgs  potential and allow a negative quartic coupling

 “strength” of the transition does not rely on the one-loop thermally generated negative self cubic Higgs coupling

V (⇥) = µ2
h|⇥|2 � �|⇥|4 +

|⇥|6
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Figure 4: Plot of the ratio ⌅n = ⇧⌃(Tn)⌃/Tn characterizing the strength of the phase transition
using the thermal mass approximation of [2] (left) and the complete one-loop potential
(right). The contours are for ⌅n = {1, 2, 3, 4} from top to bottom. f is the decay constant
of the strong sector the Higgs emerges from, and mh is the physical Higgs mass.

detailed in this article. We compare these results with the sensitivities of current gravity
wave detectors, and of proposed gravity wave detectors of the future.

3.2.1 Characterizing the spectrum

Previous studies [24, 25, 26] of the gravity wave spectrum culminate in showing that it can
be fully characterized by the knowledge of only two parameters derived ultimately from the
e�ective potential6. The first one is the rate of time-variation of the nucleation rate, named
⇥. Its inverse gives the duration of the phase transition, therefore defining the characteristic
frequency of the spectrum. The second important parameter, �, measures the ratio of the
latent heat to the energy density of the dominant kind, which is radiation at the epoch
considered: � ⇥ ⇤/⇧rad. They are both numerically computed from the e�ective action S3/T
at the nucleation temperature as follows. The time-dependence of the rate of nucleation is
mainly concentrated in the e�ective action and ⇥ is defined by ⇥ ⇥ �dSE/dt

��
tn

. Using the

6This conclusion is valid under the assumption of detonation. However, in practice the bubble expand in
a thermal bath and not in the vacuum and friction e�ects taking place in the plasma slow down the bubble
velocity. Therefore, it might be important to consider the deflagration regime as in Ref. [27]. When the
phase transition is weakly first order, we obtained under the approximations of [28] a wall velocity lower
than the speed of sound. However, in the interesting region where the phase transition gets stronger, we
approach the detonation regime and the approximations of [28] have to be refined to accurately compute the
wall velocity.

17
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region where EW phase 
transition is 1st order

strong enough  
for EW baryogenesis  

if Λ      1.3 TeV�

Delaunay-Grojean-Wells ’08
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 Higgs mass measurement does not constrain the nature of the 
EW phase transition
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at a Hadron Collider at an e

but Typically large deviations to the Higgs self-couplings
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 example: the SM+ a real scalar singlet

EW breaking
Minimum

EW preserving
Minima

Out of Equilibrium

V (H,S)

V (H,S)

= �µ2
HH2 + �HH4 + �mH2S2 � µ2

SS2 + �SS4+�mH2S2

For simplicity: Z2 (=CP) symmetric case

mercoledì, 4 maggio 2011

EW preserving 
min.

EW broken 
min.from F. Riva -> Espinosa et al, 1107.5441

e.g 1409.0005

S has no VEV today:  
no Higgs-S mixing-> no EW precision tests , tiny 

modifications of higgs couplings at colliders

sufficient, based on existing studies for precision measurements of higgs self-couplings. Remarkably,
the fact that this scenario is testable at the SPPC/FCC demonstrates that it may be possible to postulate
a “no-lose” theorem for EWBG with future colliders.

Our paper is organized as follows. In Section 2, we define the Z
2

symmetric singlet scalar model
and the two-dimensional parameter plane that illustrates its entire phenomenology. Section 3 contains
our analyses of the one-step and two-step phase transitions which enable EWBG in this model. Sec-
tions 4 and 5 examine direct and indirect signatures of the singlet scalar at colliders, and show how
the discovery potential overlaps with the EWBG-favored regions of parameter space. We consider
cosmological constraints on the singlet in Section 6 and show that, under certain assumptions, the en-
tire parameter space can be excluded by future direct detection experiments. Renormalization group
(RG) evolution and the implications of strong couplings are discussed in Section 7. We summarize
our findings and discuss implications in Section 8.

2 A “Nightmare Scenario” for a Strong Electroweak Phase Transition

Our putative nightmare scenario is constructed to hide the effects of a strong first-order phase transi-
tion, as discussed in Section 1.

2.1 Model Definition

We define our model by the following most general renormalizable tree-level higgs potential for the
SM higgs and a single real scalar:

V
0

= �µ2|H|2 + �|H|4 + 1

2

µ2

SS
2

+ �HS |H|2S2

+

1

4

�SS
4. (2.1)

After substituting H = (G+, (h+iG0

)/
p
2) and focusing on the field h which becomes the SM higgs

after acquiring a VEV1, this becomes

V
0

= �1

2

µ2h2 +
1

4

�h4 +
1

2

µ2

SS
2

+

1

2

�HSh
2S2

+

1

4

�SS
4. (2.2)

This scenario of adding a singlet with a Z
2

symmetry to the SM has been well-studied in a variety
of different contexts [50–56]. In this work, we focus on adding one real singlet with a mass larger
than mh/2 to avoid exotic higgs decays, and an unbroken Z

2

symmetry under which S ! �S to
avoid singlet-higgs mixing. In our choice of parametrization, the higgs acquires a VEV hhi = v =

µ/
p
� ⇡ 246 GeV and a mass at tree-level mh =

p
2µ ⇡ 125 GeV. In Section 3 we adopt

renormalization conditions to ensure that loop corrections do not change these values from their tree-
level expectation. Therefore we can define the higgs Lagrangian parameters � =

m2

h
2v2

⇡ 0.129 and
µ =

mhp
2

⇡ 88.4 GeV.

2.2 Physical Parameter Space

The model is determined by three new parameters, µS ,�HS and �S . However, in the context of our
nightmare scenario, it is straightforward to show that all relevant physics can be recast into the simple
two-dimensional plane of the physical singlet mass and its coupling to the higgs.

1For simplicity, we use h for the neutral real component of H as well as the SM higgs.

– 4 –

The easiest way: Two-stage EW phase transition 

Poorly constrained
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Figure 1: Pictorial representation of our scenario.

composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇤ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇥= SU(2) � SU(2) symmetry, H ⌅ SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2)� SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) � SO(2) 8 4+2 + 4̄�2 = 2� (2,2)
SO(7) SO(6) 6 6 = 2� (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) � SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3� (2,2)
Sp(6) Sp(4) � SU(2) 8 (4,2) = 2� (2,2), (2,2) + 2� (2,1)
SU(5) SU(4) � U(1) 8 4�5 + 4̄+5 = 2� (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ⇥ SU(2)L � SU(2)R are reported. For Sp(6)/SU(2) � Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ⇧ H ⇧ H ⇥ etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ⇧ SO(5) ⇧ SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

[Mrazek et al, 1105.5403]

-> Agashe, Contino, Pomarol’05 

custodial SO(4)  to avoid large corrections 
to the T parameter

Easy to motivate 
additional scalars, 

e.g:
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3 The Higgs quench from the dilaton

The quenching time tq is defined as the time when the Higgs mass turns negative.
The speed of the quench or quenching parameter is a dimensionless velocity parameter

characterizing the rate of change of the e↵ective Higgs mass squared at the time of quenching.

u ⌘ 1

m3
H

dµ2
e↵

dt

����
T=Tq

(27)

Cold baryogenesis requires u & 0.1 In the SM, the e↵ective Higgs mass varies solely because
of the cooling of the universe. Using d/dt = �HTd/dT and Tq ⇠ µ ⇠ 100 GeV, the
quenching parameter is then

uSM ⇠ 1

µ3

d

dt
(µ2 � cT 2)

����
T=Tq

⇠ H

µ

����
Tq

⇠ TEW

MP l

⇠ 10�16 (28)

This situation can be changed radically if the Higgs mass is controlled by the time-varying
vev of an additional field � e.g.

µ2
e↵(t) = µ2 � ����

2(t). (29)

Then
u ⇠ ���

1/2µ�2 �̇|tq . (30)

From energy conservation (�̇)2 ⇠ O(V ) ⇠ µ4 and we see that we can naturally get order 1
quenching parameter as it is no longer controlled but the Hubble parameter. This additional
coupling of the Higgs is what the cold baryogenesis scenario assumes. The goal of this paper
is to provide a natural motivation for such an assumption. Earlier proposal rely on adhoc
potential in which the masses pf the scalars are not protected. Instead, we show that the
mechanism can be implemented in a well-motivated framework where the smallness of the
scalar masses is under control and does not require fine-tuning.

This is a follow-up on our previous work where we already made these claims.
We now make these statements more precise and explicit.
In the case where � is the dilaton/radion we actually have:

V = V (�) +
�

4
(�2 � c�2)2 (31)

where
c = vp/k (32)

where vp is the Higgs vev in the 5D

5

(e.g. Randall-Sundrum scenario)
Higgs vev controlled by dilaton vev

a scale invariant function modulated by a slow evolution 
through the        term

similar to Coleman-Weinberg mechanism where a slow 
Renormalization Group evolution of potential parameters can 

generate widely separated scales

for   |ε|<<1

V (�) = �4 ⇥ f(�✏) (33)

�✏ (34)

4 Size of strong CP violation in the early universe

The axion dynamics is the same as usual. It starts after the QCD phase transition. And we
precisely care about what happens at the time of this transition. When the axion field starts
rolling down its potential, the field value is large, leading to large CP violation. Kuzmin et al
say, ”the only way to use strong CP violation for baryogenesis is to diminish the temperature
of the EW phase transition” and this is precisely what the dilaton is doing for us. The axion
needs to have a mass otherwise e↵ectively there is e↵ectively no CP violation and therefore
we want the QCD chiral phase transition and EW phase transition to happen at the same
tim

The axion mass is strongly suppressed at temperatures above the QCD scale ⇤QCD but
turns on rapidly when the temperature approaches ⇤QCD, as the non-perturbative QCD
e↵ects associated with instantons have amplitudes proportional to

e�2⇡↵s(T ) ⇡
✓
⇤QCD

T

◆11� 2
3Nf

(35)

where Nf is the number of quark flavors with mass below T. Below ⇤QCD, the axion mass
is suppressed as (⇤QCD/T )4

5 Dilaton constraints

8⇡g⇤T 4
reh

30
= �V (36)

�V ⇠ m2
dh�i2 (37)

Treh < 130 GeV (38)

6 Conclusion

We have shown that the QCD axion could play a key role in providing the new source of
CP violation, in this sense linking the origin of dark matter to that of the matter antimatter
asymmetry of the universe. This can be achieved provided that the EW phase atrnsiton is
delayed due to a higgs-dilaton coupling. The nearly conformal dynamics which protects the
EW scale therefore naturally provides the condition for Higgs quenching as needed in the
framework of cold baryogenesis.

baryogenesis and dark matter could be accounted in a simple
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6 Conclusion

We have shown that the QCD axion could play a key role in providing the new source of
CP violation, in this sense linking the origin of dark matter to that of the matter antimatter
asymmetry of the universe. This can be achieved provided that the EW phase atrnsiton is
delayed due to a higgs-dilaton coupling. The nearly conformal dynamics which protects the
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Another easy way to get a strong 1st-order PT:
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The position of the maximum μ+  and of the minimum μ-

can be very far apart in contrast with standard 
polynomial potentials where they are of the same order

a temperature when

S3/T ≈ log
T 4

H4
≈ 140. (6)

In order to realize several e-folds of inflation, the onset of the phase transition and bubble
nucleation should happen at a temperature that is several orders smaller than the critical
temperature when the symmetric and broken phase are degenerate. Since S3 is of electroweak
scale and well-behaved as a function of T , its derivative ∂T S3/T is likewise of electroweak
scale ρ such that

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

≈
Tn

ρ
, (7)

what is small for Tn ≪ ρ. The parameter β quantifies the inverse duration of the phase
transition and this implies that in average there is at most one bubble nucleated per Hubble
volume and percolation never happens.

In the following we will discuss how the conformal phase transition in a five-dimensional
brane setup can indeed lead to several e-folds of inflation. In the 5D picture the radion is
stabilized by a bulk scalar with a relatively small mass. In the 4D picture this corresponds
to a balance between a marginal and a slightly irrelevant deformation of the gluon sector of
the CFT. The resulting effective potential of the radion is of the form

V (µ) = µ4P ((µ/µ0)
ϵ). (8)

The field µ is a reparametrization of the brane separation r

µ = l−1e−r/l (9)

with a standard kinetic term and l is related to the 5D curvature and is of Planck scale.
The function P is roughly polynomial and parametrizes the extrema of the potential. The
position of the extrema µ± of V depend on the specific parameters but are given by

µϵ
+ ! µϵ

− ! 1. (10)

The smallness of ϵ (of O(1/10)) is then used to generate the hierarchy between the Planck
and the electroweak scale, µ− ≪ l−1, but also implies µ+ ≪ µ− and the potential is nearly
conformal between those widely spread values.

This construction leads to a tunnel action that is rather well-behaved as a function of µϵ

and not of µ. This way it is possible to achieve a small nucleation temperature in combination
with percolation and a rather small duration of the phase transition

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

" 1. (11)

An example is given in Fig. 1 where the tunnel action is plotted for a specific Goldberger-
Wise potential (taken from ref. [32]) in comparison with an action as it e.g. occurs in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us be a little bit more quantitative. The tunnel action can be calculated by deter-
mining the bounce solution [43, 44] in the potential (8). An accurate approximation can be
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Figure 1: Comparison of a typical polynomial potential given here by λ(µ2 − µ2
0)

2 + 1
Λ2 (µ2 − µ2

0)
3

with a nearly conformal potential of the type of eq. (1). Both have a minimum at µmin ∼ 1.2 TeV.
For the usual polynomial potential µmax/µmin ∼ O(1), unless coefficients are fine-tuned while for
the potential (1) with |ϵ| < 1, one can easily get a shallow potential with widely separated extrema.
In this particular example |ϵ| = 0.2. The • indicates the position of the maxima.

that the scalar effective potential describing symmetry breaking is a scale invariant function
modulated by a slow evolution:

V (µ) = µ4P

[ (

µ

µ0

)ϵ ]

, (1)

similarly to the Coleman-Weinberg potential where a slow RG evolution of the potential
parameters can generate very separated scales. P is a polynomial function reflecting some
explicit breaking of conformal invariance by turning on some coupling of dimension −ϵ. This
potential generically has a minimum at µ− ̸= 0. We are interested in the case where |ϵ| is
small so that we have an almost marginal deformation of the CFT. If ϵ > 0 symmetry
breaking results from a balance between two operators unlike in QCD where it is driven by
the blow-up of the gauge coupling [5, 6]. For |ϵ| ≪ 1, a large hierarchy is generated.

2.1 Cosmological properties of a nearly conformal scalar potential

This class of potentials leads to some unique cosmological properties. In particular, it leads
to a strongly first-order phase transition. What makes the nearly conformal potentials special
is the fact that the positions of the maximum µ+ and of the minimum µ− can be very far
apart in contrast with standard polynomial potentials where they are of the same order,
as illustrated in Fig. 1. This makes the temperature dependence of the tunneling action
behave very differently from the case of standard polynomial potentials. The nucleation
temperature Tn is determined by the tunneling point µr (also called release point), which
is located behind the barrier, somewhere between the maximum and the minimum of the
potential. For a standard polynomial potential, µ+ and µ− are of the same order and the

3
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with a nearly conformal potential of the type of eq. (1). Both have a minimum at µmin ∼ 1.2 TeV.
For the usual polynomial potential µmax/µmin ∼ O(1), unless coefficients are fine-tuned while for
the potential (1) with |ϵ| < 1, one can easily get a shallow potential with widely separated extrema.
In this particular example |ϵ| = 0.2. The • indicates the position of the maxima.

that the scalar effective potential describing symmetry breaking is a scale invariant function
modulated by a slow evolution:

V (µ) = µ4P

[ (

µ

µ0

)ϵ ]

, (1)

similarly to the Coleman-Weinberg potential where a slow RG evolution of the potential
parameters can generate very separated scales. P is a polynomial function reflecting some
explicit breaking of conformal invariance by turning on some coupling of dimension −ϵ. This
potential generically has a minimum at µ− ̸= 0. We are interested in the case where |ϵ| is
small so that we have an almost marginal deformation of the CFT. If ϵ > 0 symmetry
breaking results from a balance between two operators unlike in QCD where it is driven by
the blow-up of the gauge coupling [5, 6]. For |ϵ| ≪ 1, a large hierarchy is generated.

2.1 Cosmological properties of a nearly conformal scalar potential

This class of potentials leads to some unique cosmological properties. In particular, it leads
to a strongly first-order phase transition. What makes the nearly conformal potentials special
is the fact that the positions of the maximum µ+ and of the minimum µ− can be very far
apart in contrast with standard polynomial potentials where they are of the same order,
as illustrated in Fig. 1. This makes the temperature dependence of the tunneling action
behave very differently from the case of standard polynomial potentials. The nucleation
temperature Tn is determined by the tunneling point µr (also called release point), which
is located behind the barrier, somewhere between the maximum and the minimum of the
potential. For a standard polynomial potential, µ+ and µ− are of the same order and the

3

position of the 
maximum

tunneling point is of the same order as the value of the field at the minimum of the potential.
For a nearly conformal potential, the two extrema are widely separated and as we will show,
the release point can be as low as µr !

√
µ+µ− ≪ µ−. Since the nucleation temperature

Tn ∝ µr, we can get a very small Tn compared to the vacuum expectation value of the scalar
field µ− and therefore several efolds of inflation.

Typically, an extended phase of inflation (at least several efolds) cannot be ended by a
first-order phase transition. This is the well-known graceful exit problem of old inflation
which results from the following argument: for a generic free energy V (φ, T ) the tunnel
action S3/T is a “well-behaved” (meaning roughly polynomial) function of the temperature
T . The first nucleated bubbles appear when the temperature satisfies, in terms of the Hubble
constant H ,

S3/T ≈ log
T 4

H4
. (2)

At the weak scale, this corresponds to S3/T ≈ 140. In order to realize several efolds of infla-
tion, the onset of the phase transition and bubble nucleation should happen at a temperature
Tn that is several orders of magnitude smaller than the critical temperature Tc defined as
the temperature at which the symmetric and broken phase are degenerate.

If S3 is a well-behaved function of T , characterized by the energy scale µ0 ∼ Tc, its
derivative ∂T (S3/T ) is likewise and the parameter β which quantifies the inverse duration of
the phase transition satisfies

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

∼
Tn

µ0

S3

T

∣

∣

∣

∣

Tn

. (3)

An extended phase of inflation (for example, Nefolds ∼ log Tc/Tn ∼ 10 → Tn/Tc ∼ 10−4)
corresponds to Tn ≪ µ0 then β/H ≪ 1, which implies that bubbles never percolate and the
phase transition cannot complete and reheating never occurs.

In contrast, the potential (1) leads to a tunneling action that is well-behaved as a function
of µϵ rather than µ. This way it is possible to achieve a small nucleation temperature together
with bubble percolation and a rather long but finite duration of the phase transition for
ϵ ∼ O(1/10)

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

∼ ϵ
S3

T

∣

∣

∣

∣

Tn

! 1. (4)

An example is given in Fig. 2 where the tunneling action is plotted for a specific Goldberger-
Wise potential [15] (taken from Ref. [11]) in comparison with an action occurring e.g. in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us explain this more quantitatively. The conformal phase transition can be studied
by working in a five-dimensional Anti de Sitter (AdS) space in which the radion is stabilized
by a bulk scalar with a relatively small mass [8–11]. In the 4D picture, this corresponds to a
balance between a marginal and a slightly irrelevant deformation of the gluon sector of the
CFT. At high temperature, the system is in an AdS-Schwarzschild (AdS-S) phase involving
a single ultraviolet (Planck) brane, providing the UV cutoff of the theory. The free energy
of the AdS-S phase is given by

FAdS−S = −4π4(Ml)3T 4, (5)

4

The tunneling value       can be as low as μr
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A coupling of the type ~ 

2

arise via dimensional transmutation, i.e. from an addi-
tional coupling of the axion to the gauge fields of some
strongly coupled hidden sector. Given a dynamical scale
⇤H in this hidden sector, the axion mass is then of
O �

⇤2

H/fa
�
. For consistency, we require ma to be smaller

than H
inf

, the Hubble rate at the end of inflation:

ma . H
inf

. (3)

When inflation is over, the axion field remains practically
at rest until the Hubble parameter drops to H

osc

= ma.
Once the axion field is in motion, the e↵ective Lagrangian
contains the term

L
e↵

� g2
2

32⇡2

a(t)

fa
FF̃ = � a(t)

Nffa
@µ

�
 ̄�µ 

�
(4)

=
@ta(t)

Nffa

�
 ̄�0 

�
+ · · · = µ

e↵

j0 + · · · , (5)

with g
2

being the SU(2) gauge coupling and Nf = 3 the
number of fermion generations in the standard model,
where we have used the anomaly equation in Eq. (4), and
integration by parts in Eq. (5). In the following, we will
absorb Nf in our definition of fa and simply determine
the e↵ective chemical potential as µ

e↵

= ȧ/fa.
Now the necessary conditions for generating a lepton

asymmetry are satisfied. A nonzero e↵ective chemical
potential shifts the energy levels of particles as compared
to antiparticles. If lepton number is not conserved, the
minimum of the free energy in the plasma is reached for a
di↵erent number density of leptons than for antileptons,
i.e. for nL ⌘ n` � n

¯` 6= 0. Instead, if the lepton number
violation is very rapid, the minimum of the free energy
is obtained for an equilibrium number density of

neq

L =
4

⇡2

µ
e↵

T 2. (6)

Lepton number violation is mediated by the exchange
of right-handed neutrinos. In contrast to thermal lepto-
genesis [13], we will assume all heavy right-handed neu-
trino masses to be close to the scale of grand unification
(GUT), Mi ⇠ O �

10�1 · · · 1�⇤
GUT

⇠ 1015 · · · 1016 GeV,
so that the heavy neutrinos are never thermally pro-
duced on the mass shell, i.e. T ⌧ Mi at all times. In
the expanding universe, the evolution of the lepton num-
ber density nL is described by the Boltzmann equation

ṅL + 3HnL ' �4neq

` �
e↵

(nL � neq

L ) , (7)

where neq

` = 2/⇡2 T 3 and with �
e↵

⌘ h�
�L=2

vi denoting
the thermally averaged cross section of two-to-two scat-
tering processes with heavy neutrinos in the intermediate
state that violate the lepton number by two units,

�L = 2 : `i`j $ HH , `iH $ ¯̀
jH̄ , (8)

`Ti =
�
⌫i ei

�
, HT =

�
h
+

h
0

�
, i, j = 1, 2, 3 .

We note that the term proportional to neq

L now acts as a
novel production term for the lepton asymmetry, as long
as the axion field is in motion. For center-of-mass ener-
gies much smaller than the heavy neutrino mass scale,p
s ⌧ Mi, the e↵ective cross section �

e↵

is practically
fixed by the experimental data on the light neutrino sec-
tor [14], assuming the seesaw mass matrix [15]:

�
e↵

⇡ 3

32⇡

m̄2

v4
ew

' 1⇥ 10�31 GeV�2 , m̄2 =
3X

i=1

m2

i , (9)

where v
ew

' 174GeV and where we have assumed that
the sum of the light neutrino masses squared is of the
same order of magnitude as the atmospheric neutrino
mass di↵erence, �m2

atm

' 2.4⇥ 10�3 eV2 [16].
For a

0

⌧ M
Pl

, and as long as H � ma, i.e. prior to the
onset of the axion oscillations, the axion energy density
⇢a is much smaller than the total energy density ⇢

tot

=
⇢'+ ⇢R + ⇢a ⇡ ⇢'+ ⇢R, where ⇢' and ⇢R are the energy
densities of the inflaton and of radiation. Reheating is
described by a system of equations:

⇢̇' + 3H⇢' = ��'⇢' , ⇢̇R + 4H⇢R = +�'⇢' , (10)

H2 ⌘ �
Ṙ/R

�
2

=
⇢
tot

3M2

Pl

, ⇢
tot

⇡ (⇢' + ⇢R) , (11)

where �' is the inflaton decay rate. The inflaton must
not decay before the end of inflation, which implies

�' . H
inf

. (12)

The solution for the temperature, T 4 ⌘ ⇡2/3/g⇤ ⇢R,
according to Eqs. (10) and (11) shows the following char-
acteristic behavior: within roughly one Hubble time after
the end of inflation, T quickly rises to its maximal value,

T
max

' 5⇥ 1013 GeV

✓
�'

109 GeV

◆
1/4✓

H
inf

1011 GeV

◆
1/2

, (13)

after which the temperature decreases because the en-
ergy density is dominated by the inflaton oscillations
(which scale as matter). During reheating, the tempera-
ture drops as T / R�3/8 until radiation comes to dom-
inate at time t = t

rh

' ��1

' , when ⇢R = ⇢', and the
reheating temperature is

T
rh

' 2⇥ 1013 GeV

✓
�'

109 GeV

◆
1/2

. (14)

After the end of reheating, i.e. for t > t
rh

, the expansion
is then driven by relativistic radiation and the tempera-
ture simply decreases adiabatically, T / R�1. In the case
of a large axion decay constant, this phase of radiation
domination, however, does not last all the way to the time
of primordial nucleosynthesis. Instead, the axion comes
to dominate the total energy density at some time prior
to its decay, which marks the beginning of yet another

will induce from the motion of the axion field a chemical 
potential for baryon number given by 

This is non-zero only once the axion starts to oscillate after it 
gets a potential around the QCD phase transition.

@ta(t)

fa

EW field strength

Time variation of axion field can be CP violating source for 
baryogenesis if EW phase transition is supercooled

Cold Baryogenesis
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Baryogenesis from strong CP 
violation and  the QCD axion

requires a coupling between the Higgs and an additional light scalar: testable @ 
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Cold Baryogenesis
main idea:  

During quenched EWPT, SU(2) textures can be produced.  
They can lead to B-violation when they decay. 
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gauge dressingby thermal fluctuations

by classical dynamics

by classical dynamics

N

N

CS

H

conditions for successful cold baryogenesis. We estimate the resulting baryon asymmetry in
Section 4 and conclude in Section 5.

2 Cold electroweak baryogenesis

The main idea of cold baryogenesis relies on the evolution of winding number and Chern-
Simons number in a fast tachyonic electroweak transition. In the ‘standard’ picture (see
e.g. [19]), the EW phase transition is triggered by a rapid change in the Higgs mass (“quench-
ing”) in a nearly empty Universe. This can be arranged for instance in a low-scale inverted
hybrid inflation scenario where the inflaton is coupled to the Higgs [35, 36, 22–24]. The
resulting tachyonic instability leads to strongly out-of-equilibrium conditions with an expo-
nential growth of occupation numbers in the Higgs fields and after a short while the system
becomes classical. The SU(2) orientation of the Higgs field is inhomogeneous in space such
that different regions approach different minima in the Higgs potential, similar to a spin-
odal decomposition. The dynamics of the system can lead to substantial changes in the
Chern-Simons number of the SU(2) gauge fields

NCS = −
1

16π2

∫

d3x ϵijk Tr

[

Ai

(

Fjk +
2i

3
AjAk

)]

, (2)

and can therefore induce baryon number violation via the quantum anomaly that relates a
change in baryon number B to a change in Chern-Simons number NCS

∆B = 3∆NCS. (3)

The key point is that the dynamics of the Chern-Simons number is linked to the dynamics
of the Higgs field via the Higgs winding number

NH =
1

24π2

∫

d3x ϵijk Tr
[

∂iΩΩ
−1∂jΩΩ

−1∂kΩΩ
−1
]

, (4)

where Ω is given by the elements of the usual SU(2) Higgs doublet φ of the SM :

ρ√
2
Ω = (ϵφ∗,φ) =

(

φ∗
2 φ1

−φ∗
1 φ2

)

, ρ2 = 2(φ∗
1φ1 + φ∗

2φ2). (5)

Both the winding number and the Chern-Simons number change under large gauge trans-
formations. However, the variations ∆NCS, ∆NH and the difference

δN ≡ NCS −NH , (6)

are gauge invariant. In the vacuum, δN = 0. A texture is a configuration which has δN ̸= 0,
with a Higgs length ρ that is equal to its vacuum value everywhere and which only carries
gradient energy. In the absence of gauge fields, textures are not stable configurations but
shrink quickly [37] and the vacuum configuration is the constant Higgs field with vanishing
winding number.

Cold electroweak baryogenesis is based on gauged textures of the electroweak gauge sector
of the SM [38]. A gauged texture is also unstable and its evolution depends on its length

3

Garcia-Bellido, Grigoriev, 
Kusenko, Shaposhnikov, ’99
Tranberg et al, ’06



1) large Higgs quenching to produce Higgs winding number in the 
first place

2)  unsuppressed CP violation at the time of quenching so that a net 
 baryon number can be produced

3) a reheat temperature below the sphaleron freese-out 
temperature T ~ 130 GeV   to avoid washout of B by sphalerons

Requirements for cold baryogenesis

can occur during supercooled EW phase 
transition, 1407.0030
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Figure 7: 95% C.L. collider exclusion limit on the scale of conformal symmetry breaking,
f , with respect to m

�

for our benchmark models A and B.

As mentioned in the main text, in addition to the direct detection bounds there are
also collider bounds from the LHC and earlier experiments. The dilaton (roughly) mimics
a Higgs boson, with couplings to massive SM fields suppressed by the factor v/f compared
to that of the Higgs and couplings to massless gauge bosons that involve contributions from
the matter content of the conformal sector. Collider bounds on the dilaton can thus be
obtained by recasting the results of direct production limits from Higgs boson searches. We
use the HiggsBound [44–46] code version 4.1.2, that incorporates all the currently available
experimental analyses from LEP, the Tevatron, and the LHC [44–46].

The resulting collider bounds on the conformal symmetry breaking scale f as a function
of the dilaton mass is presented in Fig. 7 for the two benchmark models A and B defined
in Sec. 2. In obtaining these bounds we assumed, for simplicity, no invisible decay channels
for the dilaton. We can see that the collider bounds are strongly model dependent: model
A has a large coupling to gluons, and thus is very strongly constrained throughout the
parameter space relevant for LHC kinematics. Model B has small couplings to gluons and
photons, and is only weakly constrained for dilaton masses above 200 GeV.

The resulting bound on f can be turned into a bound on m
�

using Fig. 2. For example
the f & 2 TeV bound for m

�

. 400 GeV in model A implies m
�

& 300 GeV, with the
exception for a narrow resonance region.

22

[1410.1873]

LHC constraints on the scale of conformal symmetry 
breaking (dilaton)

V
EV

 o
f d

ila
to

n



Summary of this part

 -In ballpark of best eLISA sensitivity region

- Natural framework for cold EW baryogenesis mechanism 

-Phase transition takes place in vacuum:  maximal Gravity Wave 
 signal (no loose of energy in reheating of the plasma)

- Signatures at the LHC (light Higgs-like dilaton with  
suppressed couplings but accessible) 

SM+ 1 singlet scalar: the most minimal and easiest way to get 
a strong 1st order EW phase transition, almost unconstrained 

by experimental data 

●

Dilaton-like potentials: a class of well-motivated and naturally 
strong 1st order phase transitions, with large supercooling

●
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A first-order Electroweak Phase 
Transition in the Standard Model 

from Varying Yukawas
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The new result: 

The nature of the EW phase transition is completely changed 
when the Standard Model Yukawas vary at the same time as 

the Higgs is acquiring its vacuum expectation value. 

Another recent development:
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We show that the dynamics responsible for the variation of the Yukawa couplings of the Standard Model
fermions generically leads to a very strong first-order electroweak phase transition, assuming that the Yukawa
couplings are large and of order 1 before the electroweak phase transition and reach their present value af-
terwards. There are good motivations to consider that the flavour structure could emerge during electroweak
symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
paper, we do not need to assume any particular theory of flavour and show in a model-independent way how the
nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly
tied to flavour models.

I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf

i
L�

(c)
f

j
R, vary during

the EWPT, from a value of order 1 at the beginning of the
EWPT to their present value at the end of the EWPT when
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2, this can lead naturally to a very strong first-

order PT.

II. EMERGING FLAVOUR DURING EW SYMMETRY
BREAKING

A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/

p
2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,
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couplings are large and of order 1 before the electroweak phase transition and reach their present value af-
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symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
paper, we do not need to assume any particular theory of flavour and show in a model-independent way how the
nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly
tied to flavour models.

I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf
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BREAKING

A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/

p
2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,
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I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
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is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/
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2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,
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Small Numbers in a Quantum World 
the mass spectrum of the fermions is intriguing

When a small number is “protected” by a symmetry, quantum corrections won’t affect it
and we can safely postpone the question “why is it small?” to higher energy scales

The Higgs mass is a priori not protected and its “smallness” requires an explanation now!

the origin of this intriguing spectrum might come from dynamics at much higher scales 
that will never be explored at colliders

but this spectrum is stable under radiative corrections

�me / me if the electron mass is small, it will remain small in a quantum world
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1) Spontaneously broken abelian flavour symmetries 
as originally proposed by Froggatt and Nielsen

2 ) Localisation of the profiles of the fermionic zero 
modes in extra dimensions

3) Partial  fermion compositeness in composite 
Higgs models
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symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
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nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly
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I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf
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EWPT to their present value at the end of the EWPT when
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2, this can lead naturally to a very strong first-

order PT.

II. EMERGING FLAVOUR DURING EW SYMMETRY
BREAKING

A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/

p
2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,

There are three main mechanisms to describe fermion masses 

may be 
related by 

holography
}

The scale at which the flavour structure emerges is not known.

Usually assumed to be high but could be at the EW scale.
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couplings are large and of order 1 before the electroweak phase transition and reach their present value af-
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symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
paper, we do not need to assume any particular theory of flavour and show in a model-independent way how the
nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
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I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf
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BREAKING

A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/

p
2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,
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couplings are large and of order 1 before the electroweak phase transition and reach their present value af-
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symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
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nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
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I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf
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A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/
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2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,

The scale M is usually assumed close to the GUT scale

In Froggatt Nielsen constructions, the Yukawa couplings  are controlled by 
the breaking parameter of a flavour symmetry.  A scalar field “flavon”

carrying a negative unit of the abelian charge develops a vacuum 
expectation value (VEV) and:
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symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field. In this
paper, we do not need to assume any particular theory of flavour and show in a model-independent way how the
nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the
same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions cre-
ates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order
phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly
tied to flavour models.

I. INTRODUCTION

While the Higgs sector has started to be well measured
at the LHC, the nature of the electroweak phase transition
(EWPT) still remains very poorly constrained. In fact, it de-
pends only weakly on the value of the Higgs mass which is
only one parameter of the Higgs potential while the nature
of the EWPT depends mainly on the Higgs cubic and quar-
tic couplings and/or on the Higgs couplings to other scalar
fields. In the Standard Model (SM), the EWPT is a rapid
crossover [1] but minimal extensions of the SM can make it
first-order. The second run of the LHC is going to be an inter-
esting step in providing new probes of models leading to first-
order EWPT, which would have dramatic implications for EW
baryogenesis and therefore our understanding of the origin of
the matter antimatter asymmetry of the universe [2]. The EW
baryogenesis framework relies on the existence of a strongly
first-order EW phase transition [3, 4]. The baryon asymme-
try is produced in the vicinity of the EW symmetry breaking
bubble walls [5] where all three Sakharov conditions [6] are
at work. Particle distributions depart from thermal equilib-
rium and CP-violating currents are converted into baryons by
sphalerons [7, 8].

A variety of mechanisms leading to a first-order EWPT
have been proposed. Only one of them has been severely con-
strained by Higgs measurements. This concerns extensions
of the Standard Model (SM) where the barrier separating the
symmetric and broken phase minima is thermally generated
due to loops of new bosonic modes in the Higgs effective po-
tential, e.g. charged scalars from a non-minimal Higgs sector
or top squarks in the supersymmetric extension of the SM [9].
In contrast, a model where the Higgs potential is modified at
tree level due to the couplings of the Higgs to an additional
singlet, leading to potentially a 2-step EWPT is a very simple
scenario which remains difficult to test, e.g. [10, 11]. Finally,
another interesting class of models leading to a very strong
first-order phase transition which can be probed in the near
future are models where EW symmetry breaking is induced
by a dilaton [12–14], with couplings similar to the Higgs, al-
though relatively suppressed.

We present a different path here. We show that if the
Yukawa couplings yij in the interactions between the SM
fermions and the Higgs boson, yijf

i
L�

(c)
f

j
R, vary during

the EWPT, from a value of order 1 at the beginning of the
EWPT to their present value at the end of the EWPT when
h�i = v/

p
2, this can lead naturally to a very strong first-

order PT.

II. EMERGING FLAVOUR DURING EW SYMMETRY
BREAKING

A variation of the Yukawa couplings during the EWPT
is actually well-motivated when considering how the flavour
structure and fermion mass hierarchy of the SM may emerge.
There are three main mechanisms to describe fermion masses
mf = yfv/

p
2: spontaneously broken abelian flavour sym-

metries as originally proposed by Froggatt and Nielsen [15]
(FN), localisation of the profiles of the fermionic zero modes
in extra dimensions [16] and partial fermion compositeness in
composite Higgs models [17]. The last two scenarios may
be related by holography [18, 19]. The scale M at which
the flavour structure emerges is not a-priori constrained. In
FN constructions, the Yukawa couplings are controlled by the
breaking parameter of a flavour symmetry. A scalar field �

carrying a negative unit of the abelian charge develops a vac-
uum expectation value (VEV) and

yij ⇠ (h�i/M)

�qi+qj+qH
, (1)

where the q’s are the flavor charges of the fermions and the
Higgs. For an appropriate choice of flavour charges and with
h�i/M ⇠ 0.22, measured masses and mixings can be well
described. In most FN constructions, the prejudice is that the
scale M is very high, close to the GUT or Planck scale. How-
ever, it could be lower, and even close to the EW scale [20–
29].

While there is a huge literature on models advocated to ex-
plain the fermion masses [30], there is no study on the asso-
ciated cosmology. On the other hand, in all flavour models,

flavor charges of 
the fermions
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leading to the following parametric suppression of the
flavor parameters (with the FN charge of the Higgs field
set to zero):

Yt ∼ 1, Yc ∼ λ3, Yu ∼ λ7,

Yb ∼ λ2, Ys ∼ λ4, Yd ∼ λ6,

s12 ∼ λ, s23 ∼ λ2, s13 ∼ λ3. (3)

With the KM phase being of order one, the suppression
factor of eq. (1) is ϵCP ∼ λ28.

It is not unlikely that the VEVs of scalar fields have
been time varying. Such a variation could happen for
various reasons. One possibility is that at high enough
temperatures, H ∼ T 2/mPl ≫ m, where m is the mass
of the scalar, the scalar may be frozen away from the
minimum. Another possibility is that the minimum of
the scalar potential has shifted as a result of finite tem-
perature effects. Let us consider the case where, for one
reason or another, the value of ⟨S⟩ has been time vary-
ing, with ⟨S⟩ ∼ M prior to the EWPT, compared to its
present value of order 0.2M . Note that we are consid-
ering a rather mild shift, by a factor of order five. Such
a modest variation would, however, change the Yukawa
couplings in a drastic way. There will be no small pa-
rameter to suppress them, and they are all of order one.
In particular, at the EWPT

ϵCP(T ∼ Tc) = O(1). (4)

We learn that in the FN framework, a time variation
such that at early times there is neither smallness nor
strong hierarchy in the Yukawa couplings is not a con-
trived scenario. Since the smallness of ϵCP is a result
of its dependence on a very high power of a mildly small
parameter, once that single parameter is order one, there
is no suppression of ϵCP.

Shifting ⟨S⟩ between EWPT and NS. Our sce-
nario requires that the scalar field S is frozen away from
its present minimum until the EWPT, but to assume
its present value before nucleosynthesis. The simplest
mechanism that ensures that the scalar is frozen until
the EWPT but starts to oscillate and redshift shortly
afterwards is by giving it a mass that is close to the
Hubble constant at the time of the EWPT, HEWPT =
O(10−15 GeV). Such a light scalar poses, however, prob-
lems to cosmology which are known as ‘the moduli prob-
lem’:

• Light stable scalars should have masses lighter than
the Hubble constant at the time of matter-radiation
equality, Heq = O(10−37 GeV), in order not to
dominate the energy density of the Universe from
rather early times.

• Light unstable scalars should have decay rates
faster than Hubble constant at the time of nucle-
osynthesis, Hns = O(10−25 GeV).

Since mS ∼ 10−15 GeV, it is too heavy to fulfill the first
condition. Moreover, to avoid being too long lived to ful-
fill the second condition, S must decay to final photons or
neutrinos with an effective coupling larger than O(10−5).
An explicit calculation, assuming that nonrenormalizable
couplings are suppressed by powers of mPl, shows that
the actual couplings are much smaller than that.

Various ways to solve the moduli problem have been
suggested in the literature (see e.g. [5]). Here, we present
a model where the problem is circumvented. Other pos-
sible solutions will be explored in [6].

The usual scenarios assume that the scalar potential
does not change during the cosmological evolution. We
present here a simple model where the potential does
change at the EWPT. Thus, it is not the fast expansion
which freezes S but rather the potential itself. This sit-
uation allows for a larger mS which, in turn, gives a fast
enough decay rate.

Consider the following potential for the scalar S and
the SM Higgs field φ:

V (S, φ) = m4
W f

(

S†S

M2

)

− µ2
φφ†φ

[

1 + g

(

S†S

M2

)]

+ λφ(φ†φ)2
[

1 + h

(

S†S

M2

)]

. (5)

Before EWPT, we have V (S) = m4
W f . After EWPT, we

have V (S) = m4
W f − µ2

φ⟨φ⟩
2(1 + g) + λφ⟨φ⟩4(1 + h). We

learn that the required shift of ⟨S⟩ from M to λM can
occur naturally during the EWPT.

For M ≈ mPl, we still run into the cosmological moduli
problem. Assuming that the nonrenormalizable S cou-
plings to SM fields are suppressed by powers of M and
that its mass is of order m2

W /M (as is the case for the
potential (5)), we find that the leading decay mode is
S → γγ giving Γ ∼ m3

S/M2. Requiring that S decays
before nucleosynthesis, we obtain M ∼< 107 GeV. This
upper bound on M implies that mS ∼> MeV.

The mass mS ∼> MeV and the decay width ΓS ∼>

10−25 GeV lie outside of the regions excluded by var-
ious astrophysical and cosmological considerations and
by direct laboratory searches [7]. A lower bound on
M arises from the contribution of S-mediated tree di-
agrams to flavor changing neutral current processes. Es-
timating ∆mK/mK ∼ [(mdms)/(λ2M2)](f2

K/m2
K) (and

analogous relations for D- and B-mixing), we obtain
M ∼> 5 × 105 GeV, consistent with the nucleosynthesis
constraint.

In spite of the fact that M ≪ mPl, S would start
rolling only at the EWPT because earlier it is stabilized
by the potential rather than by the expansion.

One may ask whether it is possible to have a full high
energy theory that induces (5) in a natural way. We have
been able to construct a supersymmetric model with a
horizontal ZN symmetry (in the spirit of models for the
scalar potential in ref. [8]) where this is the case. A very

λ=
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Mass of fermionic species for varying Yukawas

2

Yukawa couplings are controlled by the VEV of some scalar
fields (the so-called “flavons”) and it is natural to wonder
about their cosmological dynamics. Our working assumption
is that the flavon couples to the Higgs and therefore the flavon
and the Higgs VEV dynamics are intertwined, motivating the
possibility that the Yukawas vary during the EWPT. The vari-
ous implications of this framework for electroweak baryogen-
esis will be presented in a series of papers. We will in particu-
lar discuss the CKM matrix as the unique CP-violating source
[31] as well as specific models of varying Yukawas [32, 33].

In this letter, the key point we want to make is that we do not
need to specify the dynamics responsible for the evolution of
the Yukawas to derive the nature of the EWPT. In fact, even if
the dynamics of the scalar potential of the flavon-Higgs cou-
pled system would correspond to a second order EW phase
transition when ignoring the variation of fermion masses, the
fact that the Yukawas of the SM were large during the EWPT
is enough to completely change the nature of the EWPT, while
relying only on the SM degrees of freedom (dof).

III. EFFECT OF FERMIONIC MASSES ON THE EWPT

The physics of the effect of varying Yukawas is related to
the contribution of effective relativistic dof g⇤ to the effec-
tive potential Ve↵ � �g⇤⇡

2
T

4
/90. Regions in Higgs space

in which species are massive correspond to a decrease in g⇤
and hence an increase in Ve↵ . The effect of species coupled to
the Higgs is therefore to delay and hence strengthen the phase
transition. In the usually assumed case where the Yukawas
have the same values during the EWPT as today, all Yukawas
except the one of the top quark are small and therefore al-
most all fermions are light even in the broken phase during the
EWPT. Therefore there is no significant change in g⇤ during
the EWPT and the effect of the light fermions is negligible.
Crucially, the contribution of bosonic species to the finite-T
effective potential also includes a term cubic in the mass and
hence bosonic dof not only delay the phase transition but also
create a barrier between the two minima. However, the effect
of the SM bosons is insufficient to provide a strong first-order
phase transition [1]. Thus, the common lore consists of adding
additional bosonic degrees of freedom to strengthen the phase
transition. As mentioned in the introduction, this has been
severely constrained at the LHC.

On the other hand, it was shown in [34] that adding new
strongly-coupled fermions with constant Yukawa couplings
can also help to strengthen the EWPT. Though these do not
create a thermal barrier on their own, they can lead to a de-
crease in g⇤ between the symmetric and broken phases and
hence delay and strengthen the phase transition. However,
these models are far from minimal. They suffer from a vac-
uum instability near the EW scale due to the strong coupling
of the new fermions and new bosons are also needed to cure
this instability.

In our approach of varying Yukawas, these problems are
alleviated. We are interested in models where the variation
of the Yukawa couplings is due to the VEV of a flavon field,
coupled to the Higgs, whose VEV therefore also varies during

FIG. 1: The mass of a fermionic species as a function of � for a
constant Yukawa coupling, n = 0, and varying Yukawas. In the
constant Yukawa case we take y(�) = 1. For the varying Yukawa
cases we take y1 = 1 and y0 = 0 (see Eq. 2).

the EWPT. If the Yukawa couplings decrease with the Higgs
background value �, the SM fermions can be massless both
in the symmetric phase, at � = 0, as well as at � ⇠ v due to
the falling couplings, but be massive somewhere in between,
i.e in the region 0 < � < v. This raises the potential in this
area and can therefore create a barrier. The quantitative size of
this effect is encoded in the effective potential which we shall
study below.

We stress that this does not mean that the Yukawa couplings
are controlled solely by the Higgs field, i.e. the Higgs need not
itself be the flavon (such a scenario is strongly constrained by
various Higgs and flavour measurements, see [20, 21, 26, 27]).
The variation of the Yukawas is related to the variation of the
Higgs VEV during the EWPT (during which the flavon VEV
may also change) but the Yukawas today do not depend on
the Higgs VEV v = 246 GeV nor are the Higgs-fermion cou-
plings sizeably affected. Model-dependent implementations
will be presented elsewhere [32, 33].

The aim of this letter is to stress the model-independent
features of the physics of Yukawa variation. We will therefore
present results using the following ansatz for the variation of
the Yukawa related to the variation of the Higgs VEV itself:

y(�) =

(

y1

⇣

1�
h

�
v

in⌘

+ y0 for �  v,

y0 for � � v.

(2)

The mass of the fermion species is given by

mf =

y(�)�p
2

(3)

and we illustrate the dependence of mf on � in Fig. 1. Equa-
tion (2) just expresses the fact that before the EWPT, the
Yukawas take values y1 and after the EWPT they take their
present value y0. The power n is just a parametrisation of how
fast the variation is taking place and is therefore encoding the
model dependence. Depending on the underlying model, the
Higgs field variation will follow the flavon field variation at

2

Yukawa couplings are controlled by the VEV of some scalar
fields (the so-called “flavons”) and it is natural to wonder
about their cosmological dynamics. Our working assumption
is that the flavon couples to the Higgs and therefore the flavon
and the Higgs VEV dynamics are intertwined, motivating the
possibility that the Yukawas vary during the EWPT. The vari-
ous implications of this framework for electroweak baryogen-
esis will be presented in a series of papers. We will in particu-
lar discuss the CKM matrix as the unique CP-violating source
[31] as well as specific models of varying Yukawas [32, 33].

In this letter, the key point we want to make is that we do not
need to specify the dynamics responsible for the evolution of
the Yukawas to derive the nature of the EWPT. In fact, even if
the dynamics of the scalar potential of the flavon-Higgs cou-
pled system would correspond to a second order EW phase
transition when ignoring the variation of fermion masses, the
fact that the Yukawas of the SM were large during the EWPT
is enough to completely change the nature of the EWPT, while
relying only on the SM degrees of freedom (dof).

III. EFFECT OF FERMIONIC MASSES ON THE EWPT

The physics of the effect of varying Yukawas is related to
the contribution of effective relativistic dof g⇤ to the effec-
tive potential Ve↵ � �g⇤⇡

2
T

4
/90. Regions in Higgs space

in which species are massive correspond to a decrease in g⇤
and hence an increase in Ve↵ . The effect of species coupled to
the Higgs is therefore to delay and hence strengthen the phase
transition. In the usually assumed case where the Yukawas
have the same values during the EWPT as today, all Yukawas
except the one of the top quark are small and therefore al-
most all fermions are light even in the broken phase during the
EWPT. Therefore there is no significant change in g⇤ during
the EWPT and the effect of the light fermions is negligible.
Crucially, the contribution of bosonic species to the finite-T
effective potential also includes a term cubic in the mass and
hence bosonic dof not only delay the phase transition but also
create a barrier between the two minima. However, the effect
of the SM bosons is insufficient to provide a strong first-order
phase transition [1]. Thus, the common lore consists of adding
additional bosonic degrees of freedom to strengthen the phase
transition. As mentioned in the introduction, this has been
severely constrained at the LHC.

On the other hand, it was shown in [34] that adding new
strongly-coupled fermions with constant Yukawa couplings
can also help to strengthen the EWPT. Though these do not
create a thermal barrier on their own, they can lead to a de-
crease in g⇤ between the symmetric and broken phases and
hence delay and strengthen the phase transition. However,
these models are far from minimal. They suffer from a vac-
uum instability near the EW scale due to the strong coupling
of the new fermions and new bosons are also needed to cure
this instability.

In our approach of varying Yukawas, these problems are
alleviated. We are interested in models where the variation
of the Yukawa couplings is due to the VEV of a flavon field,
coupled to the Higgs, whose VEV therefore also varies during

FIG. 1: The mass of a fermionic species as a function of � for a
constant Yukawa coupling, n = 0, and varying Yukawas. In the
constant Yukawa case we take y(�) = 1. For the varying Yukawa
cases we take y1 = 1 and y0 = 0 (see Eq. 2).

the EWPT. If the Yukawa couplings decrease with the Higgs
background value �, the SM fermions can be massless both
in the symmetric phase, at � = 0, as well as at � ⇠ v due to
the falling couplings, but be massive somewhere in between,
i.e in the region 0 < � < v. This raises the potential in this
area and can therefore create a barrier. The quantitative size of
this effect is encoded in the effective potential which we shall
study below.

We stress that this does not mean that the Yukawa couplings
are controlled solely by the Higgs field, i.e. the Higgs need not
itself be the flavon (such a scenario is strongly constrained by
various Higgs and flavour measurements, see [20, 21, 26, 27]).
The variation of the Yukawas is related to the variation of the
Higgs VEV during the EWPT (during which the flavon VEV
may also change) but the Yukawas today do not depend on
the Higgs VEV v = 246 GeV nor are the Higgs-fermion cou-
plings sizeably affected. Model-dependent implementations
will be presented elsewhere [32, 33].

The aim of this letter is to stress the model-independent
features of the physics of Yukawa variation. We will therefore
present results using the following ansatz for the variation of
the Yukawa related to the variation of the Higgs VEV itself:

y(�) =

(

y1

⇣

1�
h

�
v

in⌘

+ y0 for �  v,

y0 for � � v.

(2)

The mass of the fermion species is given by

mf =

y(�)�p
2

(3)

and we illustrate the dependence of mf on � in Fig. 1. Equa-
tion (2) just expresses the fact that before the EWPT, the
Yukawas take values y1 and after the EWPT they take their
present value y0. The power n is just a parametrisation of how
fast the variation is taking place and is therefore encoding the
model dependence. Depending on the underlying model, the
Higgs field variation will follow the flavon field variation at

 y0: Yukawa value today
 y1: Yukawa value before 
the EW phase transition

constant Yukawa case 
with y0=1 (Top quark)

FLAVOUR COSMOLOGY



High Temperature Effective Higgs Potential 

3

FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V

0
1 (�) + V

T
1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the

At one-loop:

tree 
level 
piece

1-loop 
T=0 
piece

1-loop 
T≠0 
piece

Daisy 
resummation 

piece



4

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

f @GeVD

V
ef
fâ
10
-
8
@Ge

V
4 D

FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
masses are M
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.
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effect. The third term is higher order ⇠ �

4 and can be ig-
nored for the purposes of our discussion here. The second
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.

4

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

f @GeVD

V
ef
fâ
10
-
8
@Ge

V
4 D

FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
masses are M
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.

We focuss on the fermionic contribution,

V

T
f (�, T ) = �gT

4

2⇡

2
Jf

✓

mf (�)
2

T

2

◆

, (7)

where Jf (x
2
) has a high-temperature expansion for x2 ⌧ 1,

Jf (x
2
) ⇡ 7⇡

4

360

� ⇡

2

24

x

2 � x

4

32

Log



x

2

13.9

�

. (8)

The first term in this expansion is constant in � and has no
effect. The third term is higher order ⇠ �

4 and can be ig-
nored for the purposes of our discussion here. The second
term is crucial as, for decreasing Yukawas, it leads to a barrier
between the symmetric and broken phases,
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
masses are M

2
W (�) = g
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.
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The first term in this expansion is constant in � and has no
effect. The third term is higher order ⇠ �

4 and can be ig-
nored for the purposes of our discussion here. The second
term is crucial as, for decreasing Yukawas, it leads to a barrier
between the symmetric and broken phases,
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
masses are M
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.
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The first term in this expansion is constant in � and has no
effect. The third term is higher order ⇠ �

4 and can be ig-
nored for the purposes of our discussion here. The second
term is crucial as, for decreasing Yukawas, it leads to a barrier
between the symmetric and broken phases,
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.
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The first term in this expansion is constant in � and has no
effect. The third term is higher order ⇠ �
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nored for the purposes of our discussion here. The second
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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Tc = 111 (128) GeV with (without) the daisy contribution.
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effect. The third term is higher order ⇠ �
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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3) Effects from the Daisy correction: The daisy correc-
tion comes from resumming the Matsubara zero-modes for
the bosonic degrees of freedom: [39–41]
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where the sum runs only over scalars and the longitudinal de-
grees of freedom of the vector bosons (ḡi ⌘ {1, 2, 1} for the
�, W± and Z bosons) and the ⇧i denote the thermal masses.
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where the Higgs boson thermal mass is [9]
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The novelty is the dependence of the thermal mass on �,
which comes from the �-dependent Yukawa couplings (these
do not enter into the thermal masses for the W and Z bosons
at this order). The effect of this term is to lower the effective
potential at � = 0, with respect to the broken phase minimum,
as long as ⇧�(0, Tc) � ⇧�(�c, Tc). This is shown in Fig. 5.
By lowering the potential at � = 0, the phase transition is
delayed and strengthened.

V. SUMMARY

In summary, we have shown how varying Yukawas during
the EWPT change the nature of the EWPT due mainly to three
effects on the Higgs effective potential: 1) The first effect
comes from the T = 0 one-loop potential. Large Yukawas
in the symmetric phase can lead to a significant decrease of
the potential in the region 0 < � < v. This can weaken
the phase transition. 2) The T 6= 0 one-loop contributions
from the fermions create a barrier between the h�i = 0 and
h�i 6= 0 minima. This can result in a first-order phase tran-
sition. 3) Large Yukawas at � ⇠ 0 significantly increase the
Higgs thermal mass, which, through the Daisy resummation,
lowers the potential close to the origin � ⇠ 0, delaying the
phase transition and thereby increasing �c/Tc. Note that ef-
fect (1) scales as y41 , effect (2) as y21 and effect (3) as y31 . The
net result of these three effects is to give a strong first-order
phase transition in large areas of parameter space, while not
being disallowed by creating a deeper minimum than the EW
one.

The physics of varying Yukawas during the EWPT has im-
portant implications for electroweak baryogenesis with rich
phenomenology. In addition to its effects on the nature of the
EWPT, this has dramatic effects on CP violation [31]. It will
be very interesting to identify realistic models and their exper-
imental signatures [32, 33].
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The novelty is the dependence of the thermal mass on �,
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do not enter into the thermal masses for the W and Z bosons
at this order). The effect of this term is to lower the effective
potential at � = 0, with respect to the broken phase minimum,
as long as ⇧�(0, Tc) � ⇧�(�c, Tc). This is shown in Fig. 5.
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being disallowed by creating a deeper minimum than the EW
one.
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�, W± and Z bosons) and the ⇧i denote the thermal masses.

We consider the contribution from the Higgs,

V

�
Daisy(�, T ) =

T

12⇡

n

m

3
�(�)�

⇥

m

2
�(�) +⇧�(�, T )

⇤3/2
o

,

(12)
where the Higgs boson thermal mass is [9]

⇧�(�, T ) =

✓

3

16

g

2
2 +

1

16

g

2
Y +

�

2

+

y

2
t

4

+

gy(�)

2

48

◆

T

2
.

(13)
The novelty is the dependence of the thermal mass on �,
which comes from the �-dependent Yukawa couplings (these
do not enter into the thermal masses for the W and Z bosons
at this order). The effect of this term is to lower the effective
potential at � = 0, with respect to the broken phase minimum,
as long as ⇧�(0, Tc) � ⇧�(�c, Tc). This is shown in Fig. 5.
By lowering the potential at � = 0, the phase transition is
delayed and strengthened.

V. SUMMARY

In summary, we have shown how varying Yukawas during
the EWPT change the nature of the EWPT due mainly to three
effects on the Higgs effective potential: 1) The first effect
comes from the T = 0 one-loop potential. Large Yukawas
in the symmetric phase can lead to a significant decrease of
the potential in the region 0 < � < v. This can weaken
the phase transition. 2) The T 6= 0 one-loop contributions
from the fermions create a barrier between the h�i = 0 and
h�i 6= 0 minima. This can result in a first-order phase tran-
sition. 3) Large Yukawas at � ⇠ 0 significantly increase the
Higgs thermal mass, which, through the Daisy resummation,
lowers the potential close to the origin � ⇠ 0, delaying the
phase transition and thereby increasing �c/Tc. Note that ef-
fect (1) scales as y41 , effect (2) as y21 and effect (3) as y31 . The
net result of these three effects is to give a strong first-order
phase transition in large areas of parameter space, while not
being disallowed by creating a deeper minimum than the EW
one.

The physics of varying Yukawas during the EWPT has im-
portant implications for electroweak baryogenesis with rich
phenomenology. In addition to its effects on the nature of the
EWPT, this has dramatic effects on CP violation [31]. It will
be very interesting to identify realistic models and their exper-
imental signatures [32, 33].
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The physics of varying Yukawas during the EWPT has im-
portant implications for electroweak baryogenesis with rich
phenomenology. In addition to its effects on the nature of the
EWPT, this has dramatic effects on CP violation [31]. It will
be very interesting to identify realistic models and their exper-
imental signatures [32, 33].
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The novelty is the dependence of the thermal mass on �,
which comes from the �-dependent Yukawa couplings (these
do not enter into the thermal masses for the W and Z bosons
at this order). The effect of this term is to lower the effective
potential at � = 0, with respect to the broken phase minimum,
as long as ⇧�(0, Tc) � ⇧�(�c, Tc). This is shown in Fig. 5.
By lowering the potential at � = 0, the phase transition is
delayed and strengthened.

V. SUMMARY

In summary, we have shown how varying Yukawas during
the EWPT change the nature of the EWPT due mainly to three
effects on the Higgs effective potential: 1) The first effect
comes from the T = 0 one-loop potential. Large Yukawas
in the symmetric phase can lead to a significant decrease of
the potential in the region 0 < � < v. This can weaken
the phase transition. 2) The T 6= 0 one-loop contributions
from the fermions create a barrier between the h�i = 0 and
h�i 6= 0 minima. This can result in a first-order phase tran-
sition. 3) Large Yukawas at � ⇠ 0 significantly increase the
Higgs thermal mass, which, through the Daisy resummation,
lowers the potential close to the origin � ⇠ 0, delaying the
phase transition and thereby increasing �c/Tc. Note that ef-
fect (1) scales as y41 , effect (2) as y21 and effect (3) as y31 . The
net result of these three effects is to give a strong first-order
phase transition in large areas of parameter space, while not
being disallowed by creating a deeper minimum than the EW
one.

The physics of varying Yukawas during the EWPT has im-
portant implications for electroweak baryogenesis with rich
phenomenology. In addition to its effects on the nature of the
EWPT, this has dramatic effects on CP violation [31]. It will
be very interesting to identify realistic models and their exper-
imental signatures [32, 33].

[1] F. Csikor, Z. Fodor, and J. Heitger, Phys. Rev. Lett. 82, 21
(1999), hep-ph/9809291.

[2] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Nucl. Phys.
B349, 727 (1991).

[3] M. Trodden, Rev. Mod. Phys. 71, 1463 (1999), hep-
ph/9803479.

[4] D. E. Morrissey and M. J. Ramsey-Musolf, New J. Phys. 14,
125003 (2012), 1206.2942.

[5] T. Konstandin, Phys. Usp. 56, 747 (2013), [Usp. Fiz.
Nauk183,785(2013)], 1302.6713.

[6] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967), [Usp.
Fiz. Nauk161,61(1991)].

[7] N. S. Manton, Phys. Rev. D28, 2019 (1983).
[8] F. R. Klinkhamer and N. S. Manton, Phys. Rev. D30, 2212

(1984).
[9] A. Katz and M. Perelstein, JHEP 07, 108 (2014), 1401.1827.

[10] J. R. Espinosa, T. Konstandin, and F. Riva, Nucl. Phys. B854,
592 (2012), 1107.5441.

[11] D. Curtin, P. Meade, and C.-T. Yu, JHEP 11, 127 (2014),
1409.0005.

[12] T. Konstandin and G. Servant, JCAP 1112, 009 (2011),
1104.4791.

[13] T. Konstandin and G. Servant, JCAP 1107, 024 (2011),
1104.4793.

[14] G. Servant, Phys. Rev. Lett. 113, 171803 (2014), 1407.0030.
[15] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277

(1979).
[16] T. Gherghetta and A. Pomarol, Nucl. Phys. B586, 141 (2000),

hep-ph/0003129.

[17] G. Panico and A. Wulzer, Lect. Notes Phys. 913, pp.1 (2016),
1506.01961.

[18] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999), [Adv.
Theor. Math. Phys.2,231(1998)], hep-th/9711200.

[19] T. Gherghetta, in Physics of the large and the small, TASI 09,
proceedings of the Theoretical Advanced Study Institute in El-
ementary Particle Physics, Boulder, Colorado, USA, 1-26 June
2009 (2011), pp. 165–232, arXiv:1008.2570.

[20] K. S. Babu and S. Nandi, Phys. Rev. D62, 033002 (2000), hep-
ph/9907213.

[21] G. F. Giudice and O. Lebedev, Phys. Lett. B665, 79 (2008),
0804.1753.

[22] K. Tsumura and L. Velasco-Sevilla, Phys. Rev. D81, 036012
(2010), 0911.2149.

[23] L. Calibbi, Z. Lalak, S. Pokorski, and R. Ziegler, JHEP 07, 004
(2012), 1204.1275.

[24] E. L. Berger, S. B. Giddings, H. Wang, and H. Zhang, Phys.
Rev. D90, 076004 (2014), 1406.6054.

[25] L. Calibbi, A. Crivellin, and B. Zaldı́var, Phys. Rev. D92,
016004 (2015), 1501.07268.

[26] M. Bauer, M. Carena, and K. Gemmler, JHEP 11, 016 (2015),
1506.01719.

[27] M. Bauer, M. Carena, and K. Gemmler (2015), 1512.03458.
[28] M. Bauer, T. Schell, and T. Plehn (2016), 1603.06950.
[29] K. Huitu, V. Keus, N. Koivunen, and O. Lebedev (2016),

1603.06614.
[30] K. S. Babu, in Proceedings of Theoretical Advanced Study In-

stitute in Elementary Particle Physics on The dawn of the LHC
era (TASI 2008) (2010), pp. 49–123, arXiv:0910.2948.

The effect is to lower the effective potential at Φ =0, with respect to 
the broken phase minimum. 

By lowering the potential at Φ =0, the phase transition is delayed 
and strengthened. 

__ full potential
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contribution

 - - - Daisy contribution 
only
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Full one-loop effective Higgs potential with Daisy 
Resummation

Standard Case 
 (Constant Yukawas)

 With varying 
Yukawas
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Variation of the Yukawas of  SM fermions from O(1) 
to their present value during the EW phase 

transition generically leads to a very strong first-
order EW phase transition, 

This offers new routes for generating the baryon 
asymmetry at the electroweak scale, strongly tied to 

flavour models. 

Summary 
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the CKM matrix as the unique 
CP-violating source !

Second major implication:

Bruggisser, Konstandin, 
Servant, to appear

3

II. CP VIOLATION IN THE STANDARD MODEL

It is often stated in the literature that the CP violation present in the SM is insufficient to

explain the observed baryon asymmetry. These claims rest usually on the so-called Jarlskog

determinant [21] and we review this argument in the following. The basic observation is that

physical observables cannot depend on the flavor basis chosen for the quarks; in particular

transformations of the right-handed quarks leave the Lagrangian invariant since the weak

interactions are chiral. Besides, the quark fields can be redefined absorbing one complex

phase. The last fact implies that all CP-odd observables in the SM have to be proportional

to

J = s21s2s3c1c2c3 sin(δ) = (3.0± 0.3)× 10−5, (3)

with the Jarlskog invariant J given in terms of the Kobayashi-Maskawa parametrization of

the CKM matrix V with a CP-violating phase δ as defined in refs. [21, 22]. In addition,

if two up- or down-type quark masses were degenerate, there would be no CP violation in

the Standard Model since flavor basis transformation can in this case be used to remove the

complex phase of the CKM matrix altogether from the Lagrangian.

If one further assumes that the observable under consideration is polynomial in the quark

masses, the simplest dimensionless expression that fulfills these constraints is found to be

the Jarlskog determinant that has the form

∆CP = v−12Im Det
[

mum
†
u, mdm

†
d

]

= J v−12
∏

i<j

(m̃u,i − m̃2
u,j)

∏

i<j

(m̃2
d,i − m̃2

d,j) ≃ 10−19, (4)

where v is the Higgs vacuum expectation value and m̃2
u/d denote the diagonalized mass

matrices according to

mdm
†
d = Dm̃2

dD
†, mum

†
u = Um̃2

uU
†. (5)

The identity in eq. (4) results then from the following relation of the CKM matrix (summa-

tion over indices is only performed as explicitly shown)

Im
[

VabV
†
bcVcdV

†
da

]

= J
∑

e,f

ϵaceϵbdf , V = U †D. (6)

According to this argument CP violation in the SM seems to be too small to explain the

observed baryon asymmetry that is of order η ∼ 10−10 and several proposals in the literature
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Large masses during EW phase transition
 ->no longer suppression of CKM CP violation

Berkooz, Nir, Volansky ’04
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Many well-motivated models predict a strong first-order EW phase transition.

Conclusion 

The second run of the LHC will provide new probes of models leading to first-
order EWPT, which would have dramatic implications for EW baryogenesis , A 

beautiful framework for explaining the matter-antimatter of the universe relying 
on EW scale physics only.

LISA: Beautiful and complementary window on the TeV scale

Will take time before we get a final answer.

Most recent example in connection with flavour models : 
Dynamical Yukawas during the Electroweak Phase Transition change the 

nature of the EW Phase Transition.

Scalar fields are ubiquitous in physics beyond the Standard Model
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Conclusion continued

The possibility of time-dependent CP-violating sources 
allows to make EW baryogenesis compatible with Electric 

Dipole Moment constraints and can be well-motivated 
theoretically. We provided 2 examples: strong CP from 

QCD axion, weak CP from dynamical CKM matrix
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).

contributions leading to a strong first-order phase transition.

1) Effects from the T = 0 one-loop potential: The one-
loop zero temperature correction is given by
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
masses are M
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.

2) Barrier from the T 6= 0 one-loop potential: The one-
loop finite temperature correction is given by
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.

We focuss on the fermionic contribution,

V

T
f (�, T ) = �gT

4

2⇡

2
Jf

✓

mf (�)
2

T

2

◆

, (7)

where Jf (x
2
) has a high-temperature expansion for x2 ⌧ 1,

Jf (x
2
) ⇡ 7⇡

4

360

� ⇡

2

24

x

2 � x

4

32

Log



x

2

13.9

�

. (8)

The first term in this expansion is constant in � and has no
effect. The third term is higher order ⇠ �

4 and can be ig-
nored for the purposes of our discussion here. The second
term is crucial as, for decreasing Yukawas, it leads to a barrier
between the symmetric and broken phases,
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).
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where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
therefore neglect them [38]). The field dependent gauge boson
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where g2 (gY ) is the weak isospin (hypercharge) gauge cou-
pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.

We focuss on the fermionic contribution,

V

T
f (�, T ) = �gT

4

2⇡

2
Jf

✓

mf (�)
2

T

2

◆

, (7)

where Jf (x
2
) has a high-temperature expansion for x2 ⌧ 1,

Jf (x
2
) ⇡ 7⇡

4

360

� ⇡

2

24

x

2 � x

4

32

Log



x

2

13.9

�

. (8)

The first term in this expansion is constant in � and has no
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.
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FIG. 4: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: barrier
contribution from the fermions with varying Yukawas using the high
T approximation for �V in Eq. (9). Long dashed line: barrier contri-
bution using the full numerical calculation for Jf (x

2) in (7).

contributions leading to a strong first-order phase transition.

1) Effects from the T = 0 one-loop potential: The one-
loop zero temperature correction is given by

V

0
1 (�) =

X

i

gi(�1)

F

64⇡

2

⇢

m

4
i (�)

✓

Log



m

2
i (�)

m

2
i (v)

�

� 3

2

◆

+ 2m

2
i (�)m

2
i (v)

�

, (5)

where gi are the SM degrees of freedom, F = 0 (1) for
bosons (fermions) and we have ignored the contribution of
the Goldstone bosons (gi does not strictly correspond to the
degrees of freedom present, hence both the longitudinal gauge
boson dof and the Goldstones should be summed in the Lan-
dau gauge, however, their contribution is subdominant and we
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pling.

It is clear from (5) that the effect of a large fermionic
mass is to significantly lower the potential between � = 0

and � = v. This can lead to weaker – rather than stronger
– phase transitions for increasing y1 or n in some areas of
parameter space. In addition, it can lead to the EW minimum
no longer being the global minimum. Note the effect grows
logarithmically as y0 decreases. The regions of parameter
space in which the global minimum is not the EW one are
shown in Fig. 3.
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FIG. 5: Solid line: the full potential at the critical temperature for
y1 = 2, y0 = 0.02, n = 1, g = 60. Short dashed line: the Higgs
boson daisy contribution, showing its effect of lowering the barrier at
� = 0 compared to the potential at � 6= 0. This delays and strength-
ens the phase transition. Long dashed line: the potential without the
Higgs boson daisy contribution (but still normalised to 0 at � = 0),
showing the phase transition would have occurred earlier without the
daisy contribution. Our calculation returns �c = 242 (240) GeV,
Tc = 111 (128) GeV with (without) the daisy contribution.
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giving a barrier for the potential. We show the contribution
of Eq. (9) to the barrier height at Tc in Fig. 4. This is dif-
ferent from the effect noted in [34] which assumed constant
Yukawas. The distinct effect here is that the decreasing
Yukawas actually create the barrier on their own as they
lead to effectively massless fermions, mf (�) ⌧ T , not only
around � = 0, but also at � ⇡ v. In constrast, for usual
mass terms, i.e. linear in �, only bosonic fields create thermal
barriers as the finite-T expansion for bosonic fields contains
a cubic term which the fermionic function lacks.

A large fermionic mass significantly lowers 
 between Φ=0 and Φ=v. This can lead to weaker 

- rather than stronger - phase transitions.  

In addition, it can lead to the EW minimum no 
longer being the global minimum.  

3

FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V

0
1 (�) + V

T
1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the
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Contours of  Φc/Tc=1 for different choices of y1 and y0,  
areas above these lines allow for EW baryogenesis. 

Φc/Tc=1
Φc/Tc=1

Φc/Tc=1

Dashed lines: areas above these lines are  
disallowed (for the indicated choices of 

y1 and y0 due to the EW minimum not 
being the global one.

n characterizes how fast the Yukawa variation is taking place. 
Depending on the underlying model, the Higgs field variation will 
follow the flavon field variation at different speeds. Large n means 
the Yukawa coupling remains large for a greater range of phi away 

from zero. It strengthens the phase transition.Baldes, Konstandin, 
Servant, 1604.04526


