DM models with two mediators.

How to save the WIMP

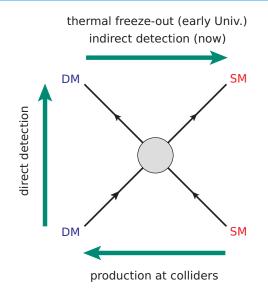
© NASA

Michael Duerr

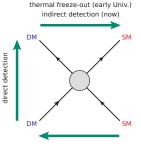
Dark Interactions 2016 Brookhaven, 6 October 2016

based on: arXiv:1304.0576, arXiv:1309.3970, arXiv:1409.8165, arXiv:1508.01425, and arXiv:1606.07609

in collaboration with: P. Fileviez Pérez, F. Kahlhoefer, K. Schmidt-Hoberg, Th. Schwetz, J. Smirnov, S. Vogl, M. B. Wise



European Research Council


DM–SM interaction.

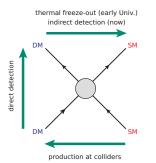
Michael Duerr | DM models with two mediators | 6 October 2016 | page 2

Connecting different DM experiments.

production at colliders

Effective theories for DM: keep DM, integrate out the rest

- > good description of DM direct detection
- > potentially problematic for DM searches at the LHC
- Simplified dark matter models: keep DM and one mediator (the lightest)
 - > example: fermionic DM χ interacts with SM fermions f via a Z'


$$\begin{split} \mathcal{L} \supset &- Z'_{\mu} \bar{\chi} \Big(g^{V}_{\mathsf{DM}} \gamma^{\mu} + g^{A}_{\mathsf{DM}} \gamma^{\mu} \gamma_{5} \Big) \chi \\ &- \sum_{f} Z'_{\mu} \bar{f} \Big(g^{V}_{f} \gamma^{\mu} + g^{A}_{f} \gamma^{\mu} \gamma_{5} \Big) f \end{split}$$

> potential problems with perturbative unitarity and gauge invariance

[Kahlhoefer et al., arXiv:1510.02110]

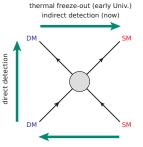
Connecting different DM experiments.

Questions

- > Origin of the model?
- > Relations betweeen couplings?
- > SM gauge invariance?

> Effective theories for DM: keep DM, integrate out the rest

- > good description of DM direct detection
- > potentially problematic for DM searches at the LHC
- Simplified dark matter models: keep DM and one mediator (the lightest)
 - > example: fermionic DM χ interacts with SM fermions f via a Z'


$$\begin{split} \mathcal{L} \supset &- Z'_{\mu} \bar{\chi} \Big(g^{V}_{\mathsf{DM}} \gamma^{\mu} + g^{A}_{\mathsf{DM}} \gamma^{\mu} \gamma_{5} \Big) \chi \\ &- \sum_{f} Z'_{\mu} \bar{f} \Big(g^{V}_{f} \gamma^{\mu} + g^{A}_{f} \gamma^{\mu} \gamma_{5} \Big) f \end{split}$$

 potential problems with perturbative unitarity and gauge invariance

[Kahlhoefer et al., arXiv:1510.02110]

Connecting different DM experiments.

production at colliders

Perturbative unitarity

- > Consider $\chi \chi \rightarrow Z'_L Z'_L$ for axial couplings
- Matrix element grows with energy
- New physics, e.g., new Higgs, to restore perturbative unitarity

> Effective theories for DM: keep DM, integrate out the rest

- > good description of DM direct detection
- > potentially problematic for DM searches at the LHC
- Simplified dark matter models: keep DM and one mediator (the lightest)
 - > example: fermionic DM χ interacts with SM fermions f via a Z'

 $\mathcal{L} \supset -Z'_{\mu} \bar{\chi} \Big(g_{\mathsf{DM}}^{\mathsf{V}} \gamma^{\mu} + g_{\mathsf{DM}}^{\mathsf{A}} \gamma^{\mu} \gamma_5 \Big) \chi$ $- \sum_{f} Z'_{\mu} \bar{f} \Big(g_{f}^{\mathsf{V}} \gamma^{\mu} + g_{f}^{\mathsf{A}} \gamma^{\mu} \gamma_5 \Big) f$

 potential problems with perturbative unitarity and gauge invariance

[Kahlhoefer et al., arXiv:1510.02110]

Part I:

A consistent simplified DM model

[MD, Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, arXiv:1606.07609]

Dark matter model with two mediators.

> Majorana DM particle χ and two mediators:

> massive vector boson Z' and real scalar s

- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- > Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi \supset} -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}} \bar{\chi} \chi s$$
$$\mathcal{L}_{q \supset} -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + \sin \theta \frac{m_{q}}{v} \bar{q} q s \right)$$

Dark matter model with two mediators.

> Majorana DM particle χ and two mediators:

> massive vector boson Z' and real scalar s

- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- > Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}} \bar{\chi} \chi s$$
$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + \sin \theta \frac{m_{q}}{v} \bar{q} q s \right)$$

> couplings are connected:

 $\frac{y_{\chi}}{m_{\chi}} = 2\sqrt{2} \frac{g_{\chi}}{m_{Z'}}$

> 6 independent parameters:

particle masses		coupling constants		
DM mass	m _χ	dark-sector coupling	$egin{array}{c} g_\chi \ { m or} \ y_\chi \ g_q \ heta \end{array} \ heta \ heta \ heta \end{array}$	
Z' mass	m _{Z'}	quark–Z' coupling		
dark Higgs mass	ms	Higgs mixing angle		

Dark matter model with two mediators.

> Majorana DM particle χ and two mediators:

> massive vector boson Z' and real scalar s

- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- > Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2 \sqrt{2}}$$
flavor-universal vector couplings to quarks

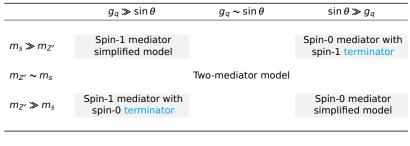
$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + si \right)$$
see model building lat

- > couplings are connected:
- > 6 independent parameters:

<i>У</i> χ	_	$2\sqrt{2}$	g_{χ}	
m_{χ}	_		m _{Z'}	

particle masse	es	coupling constants		
DM mass	m _χ	dark-sector coupling	$egin{array}{c} g_\chi \ { m or} \ y_\chi \ g_q \ heta \ hea \ heta \ heta \ heta \ heta \ heta \ $	
Z' mass	m _{Z'}	quark–Z' coupling		
dark Higgs mass	ms	Higgs mixing angle		

The connection to simplified models.

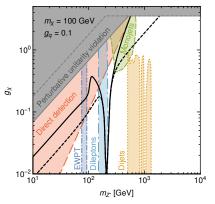

> A combination of different simplified models:

	$g_q \gg \sin \theta$	$g_q \sim \sin \theta$	$\sin\theta \gg g_q$
$m_s \gg m_{Z'}$	Spin-1 mediator simplified model		Spin-0 mediator with spin-1 terminator
$m_{Z'} \sim m_s$		Two-mediator model	
$m_{Z'} \gg m_s$	Spin-1 mediator with spin-0 terminator		Spin-0 mediator simplified model
111 <u>2</u> . # 1115	spin-0 terminator		simplified model

The connection to simplified models.

> A combination of different simplified models:

The connection to simplified models.


> A combination of different simplified models:

	$g_q \gg \sin heta$	$g_q \sim \sin \theta$	$\sin\theta \gg g_q$
$m_s \gg m_{Z'}$	Spin-1 mediator simplified model		Spin-0 mediator with spin-1 terminator
$m_{Z'} \sim m_s$		Two-mediator model	
$m_{Z'} \gg m_s$	Spin-1 mediator with spin-0 terminator		Spin-0 mediator simplified model

> Additional effects not present in usual simplified models:

- > The two mediators can interact with each other
- Mixing between the dark Higgs and the SM Higgs
- > DM stability is a consequence of the gauge symmetry
- > Kinetic mixing at loop level from SM quarks

> Relic density curve

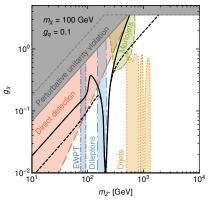
- > solid: $m_s = 3m_\chi$
- > dashed: $m_s = 0.1 m_{\chi}$

Partial wave perturbative unitarity: > conditions on couplings and masses

> from
$$\chi \chi \rightarrow \chi \chi$$
:

 $g_\chi < \sqrt{4\pi}\,, \qquad y_\chi < \sqrt{8\pi}$

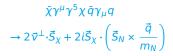
 equations can be rewritten in terms of the couplings, e.g.,


$$g_{\chi} m_{\chi}/m_{Z'} < \sqrt{\pi}$$

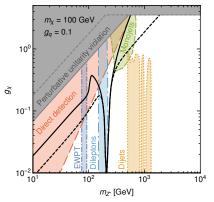
> from $ss \rightarrow ss$ and $hh \rightarrow hh$:

 $3(\lambda_h + \lambda_s) \pm \sqrt{9(\lambda_h - \lambda_s)^2 + \lambda_{hs}^2} < 16\pi$

> for
$$\lambda_{hs} = 0$$
 (no Higgs mixing):
 $m_s < \sqrt{4\pi/3}m_{Z'}/g_{\chi}$



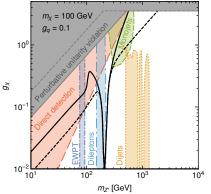
- > Relic density curve
 - > solid: $m_s = 3m_\chi$
 - > dashed: $m_s = 0.1 m_{\chi}$


Direct detection:

> DM-nucleus scattering is suppressed by the DM velocity \vec{v} and the momentum transfer \vec{q} :

- coherent enhancement leads nevertheless to relevant constraints
- recoil spectrum substantially different from standard spin-(in)dependent interactions
- > we translate the LUX 2015 results into bound on this interaction

- > Relic density curve
 - > solid: $m_s = 3m_\chi$
 - > dashed: $m_s = 0.1 m_{\chi}$


EWPT and **Dileptons**

SM quarks are charged under both U(1)_Y and U(1)' and will induce kinetic mixing at loop level:

$$\mathcal{L} = -1/2 \sin \epsilon F'^{\mu\nu} B_{\mu\nu}$$
$$\epsilon(\mu) = \frac{e g_q}{2\pi^2 \cos \theta_W} \log \frac{\Lambda}{\mu}$$
$$\simeq 0.02 g_q \log \frac{\Lambda}{\mu}$$

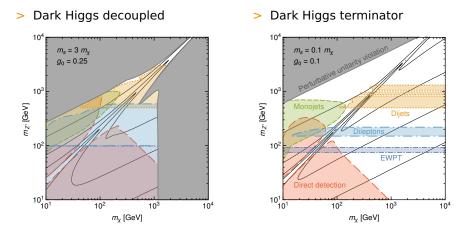
- kinetic mixing leads to couplings of the Z' to leptons, constrained by dilepton searches
- kinetic mixing also modifies the S and T parameters, which are constrained by EWPT

> Relic density curve

- > solid: $m_s = 3m_\chi$
- > dashed: $m_s = 0.1 m_{\chi}$

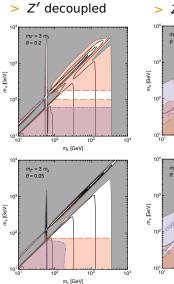
Monojets

> 8 TeV CMS results


Dijets

- > model-independent bounds on the Z' coupling as a function of its mass and width
- > combination of ATLAS and CMS results at 8 and 13 TeV, for $\Gamma_{Z'}/m_{Z'} \le 0.3$

[Fairbairn et al., arXiv:1605.07940]


Spin-1 mediation: results.

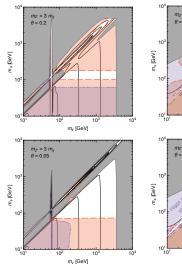
> Dark sector coupling fixed to reproduce observed relic density

Spin-0 mediation ($g_q \ll 1$).

> Z' terminator

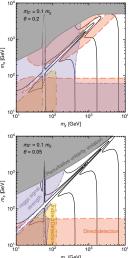
Higgs signal strength

- > Reduction of SM Higgs signal strength:
 - Mixing reduces SM Higgs production cross section
 - > for $m_{\chi} < m_h/2$: invisible decays
 - > for $m_s < m_h/2$ or $m_{Z'} < m_h/2$: decays into dark Higgs or Z'


>
$$\mu = \frac{\cos^2 \theta \, \Gamma_{SM}}{\Gamma_{SM} + \Gamma_{ss} + \Gamma_{z'z'} + \Gamma_{inv}}$$

> Current bound:
$$\mu > 0.89$$

> for $\Gamma_{ss} = \Gamma_{z'z'} = \Gamma_{inv} = 0$:
$$\theta < 0.34$$


 $m_{\rm X}\,[{\rm GeV}]$ Michael Duerr | DM models with two mediators | 6 October 2016 | page 9

Spin-0 mediation ($g_q \ll 1$).

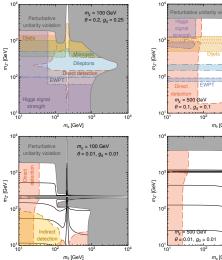
> Z' decoupled

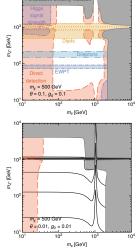
> Z' terminator

Direct detection

 the scalar mediators induce unsuppressed spin-indep.
 DM–nucleus interactions

Indirect detection

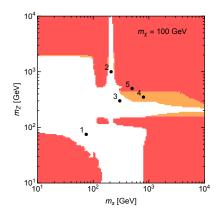

- > $\chi\chi \rightarrow sZ'$ is dominantly s-wave, and dominates thermal freeze-out when kinematically allowed
- > Then, observable indirect detection signals may be obtained from cascade annihilations
- Relevant constraints can be set using FermiLAT observations of MW dwarf spheroidals for


 $m_{Z'}, m_s < m_\chi \lesssim 100\,{\rm GeV}$

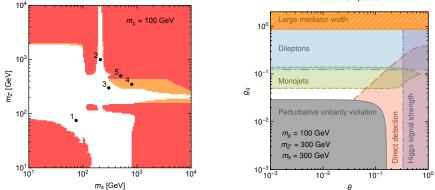
 $m_{\rm X}$ [GeV] Michael Duerr | DM models with two mediators | 6 October 2016 | page 9

Two mediators: results.

- > sizeable g_q and sin θ :
- for $m_{\rm Y} = 100 \, {\rm GeV}$, only small regions close to the resonances remain viable
- for $m_{\rm V} = 500 \,{\rm GeV}$, larger regions are allowed because s or Z' can be terminators without being strongly constrained

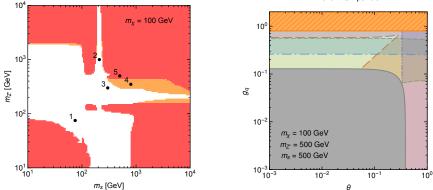

secluded from the SM:

- region with $m_{T'}, m_s > m_{\chi}$ is > tightly constrained because annihilations into SM final states cannot reproduce the relic abundance with perturbative couplinas
- for $m_{7'}, m_s < m_{\chi}$, annihilation into dark terminators typically dominates
- experimental constraints can be suppressed since q_a and θ can be small → difficult to probe
- for small masses, set-up can still > be probed by indirect detection


Global scan of couplings: set-up.

- > Scan over g_q and θ for fixed masses, dark sector coupling determined by the relic abundance
- > Three categories of mass combinations:
 - > Red: all combinations of g_q and θ are excluded by at least one constraint
 - > White: at least one combination of g_q and θ is consistent with all constraints
 - > Orange: for at least one combination of g_q and θ current constraints do not apply (broad mediator width, $\Gamma_{Z'}/m_{Z'} > 0.3$)

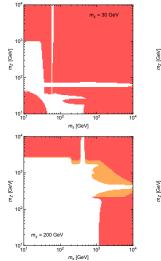
Global scan of couplings: benchmark 3.

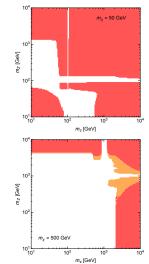


Benchmark point 3

> Parameter point allowed for $g_q \approx 0.04$ and small θ

Global scan of couplings: benchmark 5.


Benchmark point 5


> A combination of all constraints rules out this parameter point

Global scan of couplings: results.

> Scan for different values of m_{χ} :

- Small DM masses are tightly constrained: only allowed on a resonance or with at least one dark terminator.
- For large DM masses, the inconclusive regions become more important, but heavy mediators still tightly constrained. No constraints from indirect detection.



Michael Duerr | DM models with two mediators | 6 October 2016 | page 14

Part II:

Model building aspects

The Standard Model of particle physics.

> U(1)' gauge extension of the SM:

 $G' = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)'$

Field	<i>SU</i> (3) _C	<i>SU</i> (2) _L	U(1) _Y	$U(1)_B$	$U(1)_L$
Q_L	3	2	1/6	1/3	0
u _R	3	1	2/3	1/3	0
d_R	3	1	-1/3	1/3	0
ℓ_L	1	2	-1/2	0	1
e _R	1	1	-1	0	1
Н	1	2	1/2	0	0

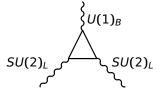
Baryonic and leptonic anomalies.

New gauge group:

 $SU(3)\otimes SU(2)\otimes U(1)_Y\otimes U(1)_B\otimes U(1)_L$

> Purely baryonic anomalies:

$$\begin{split} \mathcal{A}_1\left(SU(3)^2\otimes U(1)_B\right), \ \mathcal{A}_2\left(SU(2)^2\otimes U(1)_B\right), \ \mathcal{A}_3\left(U(1)_Y^2\otimes U(1)_B\right), \\ \mathcal{A}_4\left(U(1)_Y\otimes U(1)_B^2\right), \ \mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_B^3\right). \end{split}$$


> Purely leptonic anomalies:

$$\begin{split} &\mathcal{A}_7\left(SU(3)^2\otimes U(1)_L\right),\ \mathcal{A}_8\left(SU(2)^2\otimes U(1)_L\right),\ \mathcal{A}_9\left(U(1)_Y^2\otimes U(1)_L\right),\\ &\mathcal{A}_{10}\left(U(1)_Y\otimes U(1)_L^2\right),\ \mathcal{A}_{11}\left(U(1)_L\right),\ \mathcal{A}_{12}\left(U(1)_L^3\right). \end{split}$$

> Mixed anomalies:

$$\begin{split} \mathcal{A}_{13}\left(U(1)_B^2\otimes U(1)_L\right), \ \mathcal{A}_{14}\left(U(1)_L^2\otimes U(1)_B\right), \\ \mathcal{A}_{15}\left(U(1)_Y\otimes U(1)_L\otimes U(1)_B\right). \end{split}$$

Field	<i>SU</i> (3)	<i>SU</i> (2)	U(1) _Y	$U(1)_B$	U(1)L
Q_L	3	2	1 6	$\frac{1}{3}$	0
U _R	3	1	<u>2</u> 3	$\frac{1}{3}$	0
d _R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0
ℓ _L	1	2	$-\frac{1}{2}$	0	1
VR	1	1	0	0	1
e _R	1	1	-1	0	1
н	1	2	$\frac{1}{2}$	0	0

Baryonic and leptonic anomalies.

> New gauge group:

 $SU(3)\otimes SU(2)\otimes U(1)_Y\otimes U(1)_B\otimes U(1)_L$

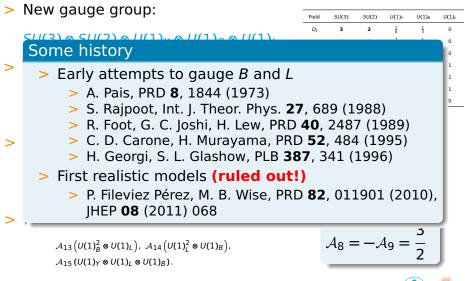
> Purely baryonic anomalies:

$$\begin{split} &\mathcal{A}_1\left(SU(3)^2\otimes U(1)_B\right), \ \mathcal{A}_2\left(SU(2)^2\otimes U(1)_B\right), \ \mathcal{A}_3\left(U(1)_Y^2\otimes U(1)_B\right), \\ &\mathcal{A}_4\left(U(1)_Y\otimes U(1)_B^2\right), \ \mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_B^3\right). \end{split}$$

> Purely leptonic anomalies:

$$\begin{split} &\mathcal{A}_7\left(SU(3)^2\otimes U(1)_L\right),\ \mathcal{A}_8\left(SU(2)^2\otimes U(1)_L\right),\ \mathcal{A}_9\left(U(1)_Y^2\otimes U(1)_L\right),\\ &\mathcal{A}_{10}\left(U(1)_Y\otimes U(1)_L^2\right),\ \mathcal{A}_{11}\left(U(1)_L\right),\ \mathcal{A}_{12}\left(U(1)_L^3\right). \end{split}$$

> Mixed anomalies:


$$\begin{split} \mathcal{A}_{13}\left(U(1)_B^2\otimes U(1)_L\right), \ \mathcal{A}_{14}\left(U(1)_L^2\otimes U(1)_B\right), \\ \mathcal{A}_{15}\left(U(1)_Y\otimes U(1)_L\otimes U(1)_B\right). \end{split}$$

Field	SU(3)	SU(2)	U(1) _Y	U(1) _B	U(1)L
QL	3	2	1 6	1 3	0
UR	3	1	<u>2</u> 3	$\frac{1}{3}$	0
d _R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0
ℓ _L	1	2	$-\frac{1}{2}$	0	1
VR	1	1	0	0	1
e _R	1	1	-1	0	1
н	1	2	$\frac{1}{2}$	0	0

SM + right-
handed
$$\nu$$
's
 $A_2 = -A_3 = \frac{3}{2},$
 $A_8 = -A_9 = \frac{3}{2}$

Baryonic and leptonic anomalies.

Consider only uncolored fields:

Field	<i>SU</i> (3)	<i>SU</i> (2)	<i>U</i> (1) _Y	$U(1)_B$	$U(1)_L$
Ψ	1	2	$\pm \frac{1}{2}$	<i>B</i> ₁	L ₁
Ψ_R	1	2	$\pm \frac{1}{2}$	<i>B</i> ₂	L ₂
η_R	1	1	±1	B_1	Lı
η_L	1	1	±1	<i>B</i> ₂	L ₂
XR	1	1	0	B_1	Lı
XL	1	1	0	<i>B</i> ₂	L ₂

Anomaly cancellation demands: $B_1 - B_2 = -3$, $L_1 - L_2 = -3$

[MD, Fileviez Pérez, Wise, arXiv:1304.0576]

Consider only uncolored fields:

Field	<i>SU</i> (3)	<i>SU</i> (2)	U(1) _Y	$U(1)_B$	- · ·
Tielu	30(3)	30(2)	U(I)Y		_ \ / _
Ψ_L	1	2	$\pm \frac{1}{2}$	B ₁	
Ψ_R	1	2	$\pm \frac{1}{2}$	<i>B</i> ₂	V
η_R	1	1	±1	B_1	X
η_L	1	1	±1	B ₂	Λ
XR	1	1	0	B_1	
XL	1	1	0	B ₂	

Anomaly cancellation demands: $B_1 - B_2 = -3$,

[MD, Fileviez Pérez, Wise, arXiv:1304.0576]

[MD, Fileviez Pérez, arXiv:1309.3970]

Spontaneous symmetry breaking.

> Relevant interactions of the new fields (for $B_1 \neq -B_2$):

$$\begin{split} -\mathcal{L} \supset h_1 \overline{\Psi}_L H \eta_R + h_2 \overline{\Psi}_L \widetilde{H} \chi_R + h_3 \overline{\Psi}_R H \eta_L + h_4 \overline{\Psi}_R \widetilde{H} \chi_L \\ + \lambda_1 \overline{\Psi}_L \Psi_R S_B + \lambda_2 \overline{\eta}_R \eta_L S_B + \lambda_3 \overline{\chi}_R \chi_L S_B + \text{h.c.} \end{split}$$

 $S_B \sim ({\bf 1}, {\bf 1}, 0, B_1 - B_2)$

> $\langle S_B \rangle \neq 0$ generates vector-like masses:

 $-\mathcal{L} \supset M_{\Psi}\overline{\Psi}_{L}\Psi_{R} + M_{\eta}\overline{\eta}_{R}\eta_{L} + M_{\chi}\overline{\chi}_{R}\chi_{L} + \text{h.c.}$

 $S_B \sim (\mathbf{1}, \mathbf{1}, 0, -3) \Rightarrow \Delta B = 3 \Rightarrow$ no proton decay

> Remnant \mathcal{Z}_2 stabilizes lightest new fermion.

Condition from anomaly cancellation: $B_1 - B_2 = -3$ \Rightarrow two options:

 $B_1 \neq -B_2$

> Dirac DM, SM singlet-like:

 $\chi = \chi_R + \chi_L$

> Coupling to the Z_B :

 $-\mathcal{L} \supset g_B \overline{\chi} \gamma_\mu Z^\mu_B (B_2 P_L + B_1 P_R) \chi$

[MD, Fileviez Pérez, arXiv:1309.3970, arXiv:1409.8165]

 $B_1 = -B_2 = -3/2$:

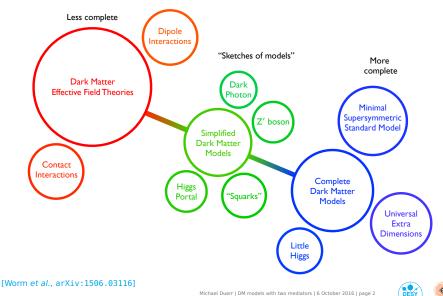
Majorana DM with axial coupling to the Z_B:

$$-\mathcal{L} \supset \frac{3}{2} g_B \bar{\chi} \gamma_\mu \gamma^5 \chi Z_B^\mu$$

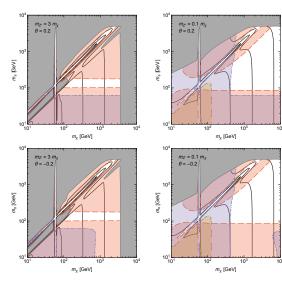
 Completion of the consistent simplified model considered in Part I

[MD, Fileviez Pérez, Smirnov, arXiv: 1508.01425]

Summary.

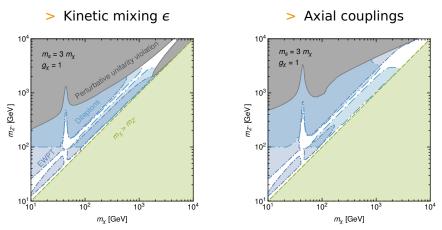

- > Two-mediator DM as a framework to realize simplified DM models in a theoretically consistent way
- > WIMP hypothesis under severe pressure, heavy mediators strongly constrained. Two viable options:
 - > DM and mediator masses are tuned close to an *s*-channel resonance
 - > One or both mediators are lighter than the DM and open additional parameter space as a dark terminator
- > Dark terminators are hard to test:
 - > Constraints from indirect detection of DM cascade annihilations if $\chi\chi \rightarrow Z's$ or $\chi\chi \rightarrow Z'h$ kinematically allowed
 - > Outlook: search for dark Higgs terminator in $pp \rightarrow Z'^{(*)} \rightarrow \chi \chi s$
- Extensions of the SM with gauged B provide a simple and complete scenario for the DM of the Universe:
 - > No proton decay even though B can be broken at the low scale
 - > DM stability as an automatic consequence of the gauge symmetry
 - > Complete and fully consistent model: gauge invariance, perturbative unitarity, anomaly cancellation

Backup slides.

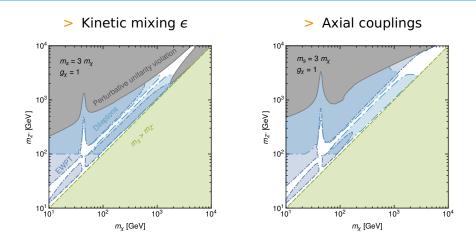


Dark matter theory space.

Michael Duerr | DM models with two mediators | 6 October 2016 | page 2


Spin-0 mediation: negative mixing angle.

- > Sign of θ relevant for trilinear vertices between the SM Higgs and the dark Higgs.
- > Considering $\theta < 0$ modifies the prediction for $h \rightarrow ss$, hence the bound from the Higgs signal strength is significantly relaxed for $m_s < m_h/2$
- However, this parameter region is independently excluded by direct detection experiments (not sensitive to the sign of θ).
- Relic density calculation not significantly affected by the sign of θ
- Effect is smaller for smaller values of |θ|


Tree-level kinetic and mass mixing.

- > Mass mixing can be realized if the SM Higgs is charged under the U(1)'. This leads to axial couplings of the Z' to SM fermions.
- > ϵ (left) and g_q^A (right) are varied for the correct relic abundance.

Tree-level kinetic and mass mixing.

> Only possible for resonant enhancement from the Z or the Z'.

Baryon and lepton numbers.

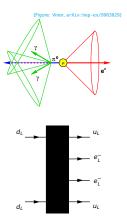
B and L are accidental global symmetries in the SM

> Violation of *B*:

> Baryon asymmetry of the Universe:

 $(n_B - n_{\bar{B}})/n_{\gamma} \sim 10^{-10}$

> Proton decay ($\Delta B = 1$, $\Delta L = \text{odd}$):


 $\tau_p \ge 10^{32-34}$ years

> Violation of L:

> ν oscillation experiments:

 $\Delta L_e \neq 0, \ \Delta L_\mu \neq 0, \ \Delta L_\tau \neq 0$

> $\Delta L = 2$: Majorana neutrino masses

[Figure: Wikipedia]

 $\begin{array}{l} \mbox{Low scale} \\ \mbox{Electroweak scale} \\ \mbox{(} \Lambda_{EW} \sim 10^2 \, \mbox{GeV)} \end{array}$

[Weinberg, PRL 43 (1979) 1566]

 $\begin{array}{l} \mbox{High scale} \\ \mbox{e.g. GUT scale} \\ (\Lambda_{GUT} \sim 10^{15}\,\mbox{GeV}) \end{array}$

Energy

[Figure: Wikipedia]

Low scale Electroweak scale $(\Lambda_{EW} \sim 10^2 \text{ GeV})$

[Weinberg, PRL 43 (1979) 1566]

 $\begin{array}{l} \mbox{High scale} \\ \mbox{e.g. GUT scale} \\ (\Lambda_{GUT} \sim 10^{15}\,\mbox{GeV}) \end{array}$

Energy

[Figure: Wikipedia]

Low scale Electroweak scale $(\Lambda_{EW} \sim 10^2 \text{ GeV})$

 $\left(\frac{C_5}{\Lambda_L}LLHH\right)$

[Weinberg, PRL 43 (1979) 1566]

 $\begin{array}{l} \mbox{High scale} \\ \mbox{e.g. GUT scale} \\ (\Lambda_{GUT} \sim 10^{15}\,\mbox{GeV}) \end{array}$

Energy

[Figure: Wikipedia]

Low scale Electroweak scale $(\Lambda_{EW} \sim 10^2 \text{ GeV})$

[Weinberg, PRL 43 (1979) 1566]

 $\begin{array}{l} \mbox{High scale} \\ \mbox{e.g. GUT scale} \\ (\Lambda_{GUT} \sim 10^{15}\,\mbox{GeV}) \end{array}$

Energy

[Figure: Wikipedia]

Low scale Electroweak scale $(\Lambda_{EW} \sim 10^2 \text{ GeV})$

[Weinberg, PRL 43 (1979) 1566]

 $\begin{array}{l} \mbox{High scale} \\ \mbox{e.g. GUT scale} \\ (\Lambda_{GUT} \sim 10^{15}\,\mbox{GeV}) \end{array}$

Energy

First realistic models are ruled out.

> Sequential/Mirror family:

[Fileviez Pérez, Wise, arXiv:1002.1754]

Ruled out: new quarks change gluon fusion Higgs production.

> Vector-like quarks: [Fileviez Pérez, Wise, arXiv:1106.0343]

Ruled out: new charged leptons reduce BR of $H \rightarrow \gamma \gamma$ by a factor of 3.

> One family of leptoquarks: $F_L \sim (3, 2, 0, -1, -1), j_R \sim (3, 1, \frac{1}{2}, -1, -1), k_R \sim (3, 1, -\frac{1}{2}, -1, -1).$ Ruled out: stable charged fields.

General Solution: gauging B and L.

All anomalies can be cancelled with the following setup:

Field	<i>SU</i> (3)	<i>SU</i> (2)	U(1) _Y	$U(1)_B$	$U(1)_{L}$
Ψ	N	2	Y ₁	<i>B</i> ₁	L ₁
Ψ_R	N	2	Y1	<i>B</i> ₂	L ₂
η_R	N	1	Y ₂	B_1	L_1
η_L	N	1	Y ₂	<i>B</i> ₂	L ₂
XR	N	1	Y ₃	B_1	Lı
ΧL	N	1	Y ₃	<i>B</i> ₂	L ₂

Anomaly cancellation demands: $B_1 - B_2 = -3/N$, $L_1 - L_2 = -3/N$ $Y_2 = Y_1 \mp 1/2$ and $Y_3 = Y_1 \pm 1/2$

Guidelines:

- > new fields should have direct coupling to SM fields, or
- > the lightest new particle is neutral and stable.

Guidelines:

- > new fields should have direct coupling to SM fields, or
- > the lightest new particle is neutral and stable.

> N = 1: Use $Y_1 = \pm 1/2$, $Y_2 = \pm 1$, $Y_3 = 0$.

If the lightest field is neutral \rightarrow DM.

Guidelines:

- > new fields should have direct coupling to SM fields, or
- > the lightest new particle is neutral and stable.

>
$$N = 1$$
: Use $Y_1 = \pm 1/2$, $Y_2 = \pm 1$, $Y_3 = 0$.
If the lightest field is neutral \rightarrow DM.

> N = 3: Use $Y_1 = \pm 1/6$, $Y_2 = \pm 2/3$, $Y_3 = \pm 1/3$. Scalar $S_{BL} \sim (1, 1, 0, -1, -1)$ leads to dimension-7 proton decay operator.

Guidelines:

- > new fields should have direct coupling to SM fields, or
- > the lightest new particle is neutral and stable.

>
$$N = 1$$
: Use $Y_1 = \pm 1/2$, $Y_2 = \pm 1$, $Y_3 = 0$.
If the lightest field is neutral \rightarrow DM.

- > N = 3: Use $Y_1 = \pm 1/6$, $Y_2 = \pm 2/3$, $Y_3 = \pm 1/3$. Scalar $S_{BL} \sim (1, 1, 0, -1, -1)$ leads to dimension-7 proton decay operator.
- > N = 8: Extra colored fields, e.g., color octet scalars, to couple the new fermions to the SM fermions.

Other solution for anomaly cancellation.

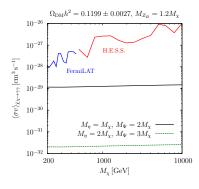
$$\Psi_{L} \sim \left(\mathbf{1}, \mathbf{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right),$$

$$\Sigma_{L} \sim \left(\mathbf{1}, \mathbf{3}, 0, -\frac{3}{2}, -\frac{3}{2}\right),$$

$$\Psi_R \sim \left(\mathbf{1}, \mathbf{2}, \frac{1}{2}, -\frac{3}{2}, -\frac{3}{2}\right)$$
$$\chi_L \sim \left(\mathbf{1}, \mathbf{1}, 0, -\frac{3}{2}, -\frac{3}{2}\right)$$

[Fileviez Pérez, Ohmer, Patel, arXiv:1403.8029]

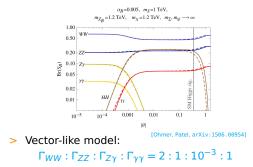
[Ohmer, Patel, arXiv:1506.00954]


- > Less representations
- > Same degrees of freedom after symmetry breaking
- > Majorana dark matter

What about the additional fermions?.

> Majorana DM ($B_1 = -B_2$):

loop-mediated DM annihilation to photons



[MD, Fileviez Pérez, Smirnov, arXiv:1508.01425]

> Decays of S_B:

- > For $\theta \rightarrow 0$, the branching fractions of the fermion-loop-mediated decays of S_B may provide clues about the fermion content of the model at the LHC
- > Model with SU(2) triplet:

 $\Gamma_{WW}:\Gamma_{ZZ}:\Gamma_{Z\gamma}:\Gamma_{\gamma\gamma}=20:7:3:1$

