INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Hidden=Dark Sectors, why we all love them and should look for them 🕲

J. Jaeckel

B. Doebrich Gies^o, F. Kahlhou

Lobanov^y, V. Mehta^{*} ingwald*, U. Schmidt**, K. Schmidt-Hoberg*

and The FUNK Collaboration

ITP Heidelberg, ^zCERN, ^TIPPP Durham,

MPIFR Bonn, *U. Zaragoza, **Paris L

We need... Physics beyond the Standard Model

No no no!!!!!!!!

 $\frac{1}{2}m_{h}^{2}h^{2} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \sqrt{\frac{\eta}{2}m_{h}h^{3} + \sqrt{\frac{\eta}{2}}m_{h}h^{3} + \sqrt{\frac{\eta}{2}m_{h}h^{3} + \sqrt{\frac{\eta}{2}m_{h}h^{3} + \sqrt{\frac{\eta}{2}m_{h}h^{3} + \sqrt{\frac{\eta}{2}m_{h}h^{3} + \sqrt$ CD $\frac{1}{4} \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\,\mu\nu} \log^{(1+1)}$ + nothing else

Inventory of the Universe

Where does it hide?

Exploring is (at least) 2 dimensional

Exploring is (at least) 2 dimensional

Theories for hidden sectors...

Get a map for exploration... there is room for finding dragons

Get a map for exploration... there is room to find dragons

Theories for exploration...

- THEORETISCHE PHYSIK Heidelberg University
- Columbus used a calculation by D'Ailly:
 - Canary Island ←→ Japan ~ 4500 km
 - Reality: 20000km

• Sometimes it helps to be optimistic ;-).

Theories for exploration...

THEORETISCHE PHYSIF Heidelberg University

- Perhaps a better example...
- The theory of a southern continent to "balance" the northern ones...

James Cook discovered Australia. (though not quite as big as expected)

The "theory" was #\$%@. But: Who can argue with these results ©

Hope for light Particles?

YES!

Coincidences?

• Neutrino masses:

 $m_{\nu} \sim \mathrm{meV}$

• Dark Energy scale:

$$ho_{\Lambda} \sim ({\rm meV})^4$$

• Energy density of the Universe:

$$\rho_{\rm today} \sim ({\rm meV})^4$$

Large scale Small coupling

Effective higher dimensional coupling

$$\mathcal{L}_{Int} = -\frac{1}{4}gaF^{\mu\nu}\tilde{F}_{\mu\nu} = -ga\mathbf{E}\cdot\mathbf{B}$$

• Small coupling for large axion scale:

$$\label{eq:small} {\rm Small} {\rm Im} g \sim \frac{\alpha}{2\pi f_a} {\rm Large}$$

Large scale Small mass

• The axion mass is small, too!

$$\label{eq:ma} {\rm Small} ~~ m_a \sim \frac{m_\pi f_\pi}{f_a} {\rm Large}$$

• The axion mass is small, too!

Pseudo-Goldstone Boson!

Example: Axion See-Saw

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

• The axion mass is small, too!

Very Weakly Interacting Sub-favorite scale Particles WISPS from String Theory

Axion(-like particles)

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

String theory: Moduli and Axions

String theory needs Extra Dimensions

Must compactify

 Shape and size deformations correspond to fields: Moduli (WISPs) and Axions Connected to the fundamental scale, here string scale

WISPs candidates

Axions and Moduli

Gauge field terms

 $\frac{1}{q^2}F^2 + i\theta F\tilde{F}$

+ Supersymmetry/supergravity

$$\mathcal{L} = \operatorname{Re}[f(\Phi)]F^2 + \operatorname{Im}[f(\Phi)]F\tilde{F}$$

Scalar ALP/moduli coupling pseudoscalar ALP coupling

Axions and Moduli

- Gauge couplings always field dependent (no free coupling constants)
- Axions + Moduli always present in String theory

Masses and Couplings

"Axion scale" related to fundamental scale

INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

$$f_a \sim \frac{M_P}{\text{Volume}^x} \sim M_s \left(\frac{M_s}{M_P}\right)^y$$

- If QCD axion: m_a fixed
- However, if not QCD axion $m_{
 m ALP}\sim rac{\Lambda^2}{f_a}$ (nearly) arbitrary

Axion-like Particles

Axion-like Particles

Axion-like Particles

THEORETISCHE PHYSIK Heidelberg University

Hidden Photons + Hidden Matter

String theory likes extra gauge groups

How coupled?

Kinetic mixing

$$\mathcal{L}_{\rm mass} = \frac{1}{2} m_{\gamma'}^2 X^{\mu} X_{\mu}$$

+ Mass

photon – hidden photon oscillations Light shining through walls, fixed targets etc..

Hidden by distance

Hidden by weakness

- Higgs and Stueckelberg mechanism possible
- Example: Stueckelberg

 $(m_{\gamma'}^{\rm Stueck})^2 \simeq \frac{g_s}{2} \left(\frac{4\pi}{g_s^2} \frac{M_s^2}{M_P^2}\right)$ \mathcal{Z} $\frac{g_s}{2} \frac{m_s}{\text{Volume}^z},$

Hidden Photons, All over the place

Hidden Photons: Back to Experiment

0 Collapsed cycle HC _ Hidden Higgs $(m_{H_b} > m_{\gamma'})$ 19 Stück. -218 17 Fixed Target Higgs -316 Super B 15 -4<107 <105 $W_0 < 10^3$ 14 -513 Log₁₀ M_s[GeV] 12 -6SW $\mathrm{Log}_{10}\chi$ 11 _7 10 MW -8lioscope 9 cavity -9 Stückelberg #2 Stückelberg #1 -10-11Hidden Higgs $(m_{H_b} \approx m_{\gamma'})$ $\langle H_h \rangle > M_s$ -123 X-ray SAT -13-14-15-12-8-22 8 10 12 14 -16-14-100 4 6 -6 $^{-4}$ $\text{Log}_{10}m_{\gamma'}[\text{eV}]$

THEORETISCHE PHYSIK Heidelberg University

String theory likes extra matter

INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

Hidden sector matter
 Appears to be minicharged

How coupled?

Kinetic mixing

$$\mathcal{L}_{gauge} = -\frac{1}{4} F^{\mu\nu}_{(A)} F_{(A)\mu\nu} - \frac{1}{4} F^{\mu\nu}_{(B)} F_{(B)\mu\nu} + \frac{\chi}{2} F^{\mu\nu}_{(A)} F_{(B)\mu\nu},$$

"Our" U(1) "Hidden" U(1) Mixing

+ Matter
$${\cal L}_{
m int}=g_{
m hid} ar{h} \gamma_\mu X^\mu h$$

U(1) massless:

- Particles with small electric charges U(1) massive:
- Very weakly coupled dark particles (e.g. dark matter messenger models)

Minicharged particles...

Phenomenological reasons for Hidden Sectors

Many Uses

- Gamma ray transparency of Universe
- Energy Loss in Stars
- (g-2) of the muon
- Supersymmetry breaking and the hierarchy problem
- Dark Matter (and indications from astrophysics)
- Dark Energy
- Many more....

Dark Matter(s)

Answering the big questions...

The axion has no clue where to start

The axion has no clue where to start

The axion solution to the strong CP problem

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Oscillations contain energy
 behave like non-relativistic particles (T=0)

Axion(-like particle) Dark Matter

Detecting WISPy DM

Use a plentiful source of axions

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Photon Regeneration

Signal: Total energy of axion

An extremely sensitive probe!!!

A discovery possible any minute!

Electricity from Dark Matter ;-).

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Photon Regeneration

Encircling the axion...

Broadband Search Strategy

Dark Matter Antenna

Probes here;

very sensitive!!

-Antenna converts axion->photon Radiation concentrated in center

Detector

The FUNK Experiment

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Recycle Auger mirror

Detector -

First Results

Upgrade: The PMT 9000(+107)

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Discovery Potential ©!!!

A Dream for Astrology ehhm Astronomy

Emission from moving dark matter

 $V_{DM} = 0$

V_{DM}≠0=

INSTITUT FÜR

Heidelberg University

THEORETISCHE PHYSIK

Going Ultimate... MADMAX

10 Tesla dipole magnet

INSTITUT FÜR

Heidelberg

THEORETISCHE PHYSIK

Going Monodromic

Axion Monodromy

Allows for extended field range

 $V(\phi) = \frac{1}{2}m^2\phi^2 + \Lambda^4 \left(1 - \cos\left(\frac{\phi}{2\pi f}\right)\right)$

Advantages

Allows to start with higher energy density
 More DM
 /

VS

Models

in this region!

LSW + ALPS $SN1987_{2}$ CAST + Sumico $[GeV^{-1}]$ SN1987a Hal Optical Log *s*mperature EBL dependent mass -17Standard ALP CDM -20-12-9 -6 3

 $\log m_{\phi}[eV]$

Interesting Phenomena??

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Could get stuck here

Oscillations like DM!

Interesting Phenomena??

 $amplitude \sim \sqrt{DMdensity}$

Interesting Phenomena??

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Instability \rightarrow Particle Production with $p \neq 0$?!?

Very rapid particle production...

Conclusions

Conclusions

- Good Physics Case for Hidden Sectors
 explore `The Low Energy Frontier'
- Low energy experiments complementary to accelerators!

Dark Matter may be WISPy
 New Search opportunities!
 Searches ongoing!
 Crazy things to explore!

