Dark Sector Searches at e⁺e⁻ Colliders

Dark Interactions Brookhaven National Lab October 5, 2016

> Yury Kolomensky UC Berkeley/LBNL

Outline

- KLOE results $\Box A' \rightarrow e^+e^-, \pi^+\pi^-, \mu^+\mu^-$
- New BaBar results
 Muonic dark force
 Preview of things to come
- Near future prospects (Belle-II)

Dark Sector Searches

- Coupling to SM particles proportional to $\varepsilon^2 \alpha$
- Search for direct resonance production in e⁺e⁻ annihilation.
- Multi-lepton final states, or radiative processes $e^+e^- \rightarrow \gamma$ +visible, γ +invisible
- Very large datasets allow for highstatistics searches

Pospelov:

Bjorken, Essig, Schuster, Toro Andreas, Niebuhr, Ringwald Batell, Pospelov, Ritz; Essig, Harnik, Kaplan, Toro Blumlein, Brunner;

Dent, Ferrer, Krauss Essig Schuster, Toro, Wojtsekhowski KLOE, APEX, MAMI/A1 Collab. Davoudiasl, Lee, Marciano; Endo, Hamaguchi, Mishima

Active Field

Dark Photon Branching Ratios

Same BRs as for virtual photon of mass m_{A'} Assumes no invisible degrees of freedom Lepton modes are simplest, but important to cover all bases

KLOE: $A' \rightarrow e^+e^-$

• Fully-reconstructed final state

Phys. Lett. **B750**, 633 (2015)

- $\square e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-$
- □ 1.54 fb⁻¹ collected at E_{cm} =1.019 GeV (phi peak)
- □ Select fully-reconstructed events with e^+ , e^- , γ at wide angles to suppress bhabha backgrounds
- Look for narrow peak in e^+e^- mass spectrum

□ $5 \text{ MeV} < m_{A'} < 500 \text{ MeV}$

KLOE: $A' \rightarrow \pi^+ \pi^-$

- Partially-reconstructed final state Phys. Lett. **B757**, 656 (2016)
 - $\Box e^+e^- \rightarrow \gamma A', A' \rightarrow \pi^+\pi^-$
 - 1.93 fb⁻¹ collected at $E_{cm}=1.019$ GeV (phi peak)
 - Select events with ISR kinematics, π^+ , π^- at wide angles, undetected γ
- Look for narrow peak in $\pi^+\pi^-$ mass spectrum around ρ and ω resonances
 - □ Backgrounds dominated by hadronic events: $e^+e^- \rightarrow \pi^+\pi^-\gamma$ and phi decays
 - □ Look for narrow peak above smooth background, except for ρ/ω interference region where background needs to be modeled carefully (PHOKARA)

KLOE: $A' \rightarrow \pi^+\pi^-$

No significant excess above 2σ local significance

\sim													
アノ	F,				11		1	-		 		t	1
	FI	χ² / ndf	12.45 / 21	1	т								
20		Constant	12.92 ± 1.20				-						
2U	\vdash	Constant	12.03 ± 1.30									_	
10	Εl	Mean	0.08552 ± 0.08623			T							
١ð	E	Sigma	1.024 ± 0.095										

ns

KLOE Results

KLOE: $A' \rightarrow \mu^+ \mu^-$ with Missing Energy

- Partially-reconstructed final state Phys. Lett. **B747**, 365 (2015)
 - □ Higgsstrahlung $e^+e^- \rightarrow h'A'$, $A' \rightarrow \mu^+\mu^-$ and long-lived h'
 - □ 1.86 fb⁻¹ collected at or below phi peak
 - Select events with reconstructed μ^+ , μ^- and missing momentum pointing to the calorimeter
- Look for narrow peak in $\mu^+\mu^-$ mass in bins of $M_{\mu\mu}$ and

Dark Sector in e+e- collisions

KLOE: $A' \rightarrow \mu^+ \mu^-$ with Missing Energy

• Cut-n-count analysis

Phys. Lett. **B747**, 365 (2015)

- Use events in sideband bins to predict the bin of interest
- First constraints for $m_{h'} < m_{A'}$

BaBar Search for Muonic Dark Force

- Dark Z' that couples to 2nd (and 3rd) generations
 - Avoids constraints from previous multi-lepton searches
 - □ Could potentially explain $(g-2)\mu$
- Fully reconstructed 4μ final state (2 identified muons)
 - □ Full 514 fb⁻¹ dataset

BaBar Search for Muonic Dark Force

BaBar Invisible Dark Photon Search

Peaking background from $e^+e^- \rightarrow \gamma \gamma$, with one of the photons missing the EM calorimeter. Veto such events by detecting activity in the muon detector (IFR).

- $\Upsilon(3S) \rightarrow \gamma + \text{invisible}$ (arXiv:0808.0017)
- Require a single photon with $E_{\gamma}^*>2.2 \text{ GeV}$
- No charged tracks, small excess calorimeter energy
- Missing momentum points to calorimeter
- No activity in IFR aligning with missing momentum
- No signal found: limits on ε of order O(10⁻³-10⁻²)
- Updated analysis in progress

Invisible Dark Photon: Limits

Invisible Dark Photon: Limits

Implications for Belle-II

- Low-multiplicity triggers are key
- Single-photon triggers implemented in BaBar in 2007-2008:
 - Level-1 trigger: $E_{\gamma} > 0.8 \text{ GeV}$
 - \bigcirc 300-400 Hz @ 10³⁴ cm⁻²s⁻¹ luminosity (~40 nb cross section)
 - Level-3 trigger and offline filter
 - ☞ ~100 Hz rate
- High rate: early (low-lumi) analyses. May need to tighten selection at high luminosity
- Better (non-projective) calorimeter for invisible analysis
- For visible analyses, mass resolution may improve (larger drift chamber)

Belle-II Sensitivity: Visible Modes

Belle-II Sensitivity: Invisible Mode

Possible results as early as 2017-2018?

DI2016

Summary and Outlook

- B Factories provide significant constraints on new physics models with low-mass degrees of freedom
 - Direct searches: unique sensitivity to low-mass new physics in high-statistics datasets
- Belle-II will increase statistics by orders of magnitude
 - Combined with LHC and direct detection dark matter searches, these measurements will provide unique information on the dynamics and flavor structure of new physics

in Upsilon decays Search for Dark Higgs

- Extension of the dark sector models: dark Higgs
 - Mass generation in dark sector
 - □ Mass can be low
 - □ Detect by Higgs-strahlung process e+e-→ A'h'
 - Decays to A' pairs
 - Multi-particle (multi-lepton) final state
 - Clean detection, virtually no QED background

in Upsilon decays

Focus on direct decay topology: $e^+e^- \rightarrow A'h'$; $h' \rightarrow A'A'$ Look for A' decays to a pair of oppositely-charged tracks, or to invisible final state (A' $\rightarrow e^+e^-$, $\mu^+\mu^-$, $\pi^+\pi^-$, X)

Require same mass for each pair

6 events selected (18 combinations)

Consistent with background estimates

i Gine Bearch for bark Sector atte

Look for $e^+e^- \rightarrow l^+l^-l^+l^-$ final states (4e, $2e^2\mu, 4\mu$) as a function of two-

lepton mass

Full BaBar dataset (~540 fb⁻¹)

Some of the smallest cross section ULs measured @ B-Factories