New Directions for DM Direct Detection

Tien-Tien Yu (CERN)

Dark Interactions, BNL - October 4, 2016

Nuclear Recoil

1509.01515

E_{NR} thresholds LUX: 3 keV **DAMIC: 500 eV** CDMSlite, CRESST: 300 eV DM nucleus $\mu_{\chi N}^2 v^2$ *not to scale E_R e⁻ $2m_N$ m_N

 $m_{\chi} = 100 \text{ GeV}, E_R \sim 100 \text{ keV}$ $m_{\chi} = 100 \text{ MeV}, E_R \sim 1 \text{ eV}$

typical momentum transfer

typical size of the momentum transfer is set by the electron's momentum

$$q_{\rm typ} \simeq m_e v_e \sim Z_{\rm eff} \alpha m_e$$

This requires q on tail of e- wave function or DM velocity!

typical energy transfer

$$\Delta E_e = \vec{q} \cdot \vec{v} - \frac{q^2}{2\mu_{\chi N}}$$

arbitrary-size momentum transfer is possible

 \frown

 $\Delta E_e \le \frac{1}{2} \mu_{\chi N} v^2$

typical energy transfer

ALL the kinetic energy in the DM-atom collisions is available to excite the electron!

typical energy transfer

ALL the kinetic energy in the DM-atom collisions is available to excite the electron!

 $\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma_e}}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$

$$\overline{\sigma}_e = \frac{\mu_{\chi e}^2}{16\pi m_{\chi}^2 m_e^2} \overline{|\mathcal{M}_{\chi e}(q)|}_{q^2 = \alpha^2 m_e^2}^2$$

$$\sigma(q) = \overline{\sigma}_e \times |F_{DM}(q)|^2$$

$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$

$$\eta(v_{min}) = \int_{v_{min}} \frac{\mathrm{d}^3 v}{v} f_{MB}(\vec{v})$$

$$v_{min} = \frac{E_R + E_B}{q} + \frac{q}{2m_\chi}$$

material dependent

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q [f(k,q)|^2] F_{DM}(q)|^2 \eta(v_{min})$$

$$\left| f_{i \to i'}(\vec{q}, \vec{k}) \right|^2 = \frac{V}{(2\pi)^3} \int_{BZ} d^3k' \left| \int d^3x \psi^*_{i', \vec{k}'}(\vec{x}) \psi_{i, \vec{k}}(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \right|^2$$

probability of going from state i to i'

General goals and challenges

- DM mass reach $m_\chi \gtrsim 250 \text{ keV} \times \frac{\Delta E}{1 \text{ eV}}$
- Backgrounds
- Signal vs. Background discrimination
- material fabrication and experimental design

Phys.Rev.Lett. 109 (2012) 021301

Essig, Manalaysay, Mardon, Sorenson, Volansky

Phys.Rev.Lett. 109 (2012) 021301

Essig, Mardon, Volansky, TTY, in preparation

challenges

- detector specific backgrounds
 - e⁻ gets trapped in liquid-gas interface and is later released
 - e- gets trapped by impurities and is later released
 - e⁻ emission by cathode
- ionization energy (12.1 eV) limits DM mass reach to few MeV

Semiconductor targets

band

band gap

band

Essig, Fernandez-Serra, Mardon, Soto, TTY [1509.01598] JHEP 1605 (2016) 046

see also:

Essig, Mardon, Volansky [1108.5383] Phys.Rev. D85 (2012) 076007 Graham, Kaplan, Rajendran, Walters [1203.2531] Phys.Dark Univ. 1 (2012) 32-49 Lee, Lisanti, Mishra-Sharma, Safdi [1508.07361] Phys.Rev. D92 (2015) 083517

Semiconductor targets

band gap [eV]

Ge	0.67
Si	1.1
GaAs	1.5
Nal	5.9
Csl	6.4

Semiconductor targets

apply an electric field and extract the electron(s) "ionization"

e-/h+ recombine to produce photon(s) "scintillation"

ionization signal

1 kg-year, 3.6 events

ionization signal

challenges

- readout noise can minimize by increasing time of readout (ongoing with FNAL group)
- E-field used to drift the electrons may produce dark current — fundamentally limits the sensitivity

challenges

- readout noise can minimize by increasing time of readout (ongoing with FNAL group)
- E-field used to drift the electrons may produce dark current — fundamentally limits the sensitivity

scintillator signal

Derenzo, Essig, Massari, Soto, TTY [1607.01009]

challenges

- contaminants in detector material
- needs large area photon detectors (proposals in progress)
- afterglow

signal vs. background discrimination

- variety of materials and techniques
- annual modulation
- directionality (daily modulation)

directionality

Department for Materials Research, Risø DTU

Essig, Mardon, Soto, TTY (in preparation)

Essig, Mardon, Soto, TTY (in preparation)

directionality

GaAs form factor

halo function

Essig, Mardon, Soto, TTY (in preparation)

very preliminary

directionality

Essig, Mardon, Soto, TTY (in preparation)

very preliminary

other ideas

- chemical bond breaking [1608.02940]
- 2D targets graphene [1606.08849], carbon nanotubes [1412.8213,1602.03216]
- superconductors [1504.07237, 1512.04533]
- superfluid helium [1604.08206]
- ????

Absorption

- same experiments can be used for down to ~eV DM
- consider absorption of DM instead of scattering

Absorption

See also Jaeckel, Raffelt, Redondo...

axions

dark photons

Bloch, Essig, Tobioka, Volansky, TTY [1608.02123]

An, Pospelov, Pradler, Ritz [1401.8287] An, Pospelov, Pradler [1309.6599] Hochberg, Lin, Zurek [1604.06800,1608.01994]

Absorption

solar dark photons

Bloch, Essig, Tobioka, Volansky, TTY [1608.02123]

See also An, Pospelov, Pradler [1304.3461]

