"Recent results and prospects on Dark Interactions from NA48/2 & NA62"

Dark Interaction Workshop October 4-7 2016 <u>BNL</u>

Gianluca Lamanna (INFN),

Kaon physics @ CERN

Why Kaons?

Non-MFV: FCNC decays with high suppression in the standard model and The $K \rightarrow \pi v \overline{v}$ has a very clean theoretical clean SM prediction (λ^5 prediction. suppression). Kaon Factory: New Physics effects Clean environment in K: in flavour physics NA62 & NA48/2 few decay channels, low and search for background. Direct and exotics in mesons indirect search for new decays states and DM portals. Easier in K: the B decays are suppressed (Vub<<Vus) while R_{κ} is MFV: helicity suppressed 10⁻⁵. Cleaner observables are sensitive environment to search to SUSY ($B \rightarrow II$, $B \rightarrow I_V$, for forbidden decays. $K \rightarrow I_V$). LFV decays forbidden in SM. 3

NA48/2: charged K CP violation

- K+/K- beams (60 GeV/c)
 - Produced in Be target from 400 GeV/c protons from SPS
- Main goal: study CP violation in 3π decays
- Spectrometer: 4 DCH σ_P/p=1.02%+ 0.044% p(GeV)
- LKr Calorimeter
- σ_{E} /E=3.2%/ $\sqrt{E(GeV)}$ +9%/E(GeV)+0.42%
- Veto system, fast timing, flexible trigger configuration
- Data collected in 2003+2004

NA62: ultra-rare decays

- 75 GeV/c hadron beam (~8% K) from 400 GeV/c p from SPS
 - Total rate ~800 MHz, 10¹² pot, 3.5 s spill
- Complete kinematics, quasi-hermetic veto system, PID system, calorimeters
- Main goal: $K^+ \rightarrow \pi v v^-$ O(100) events with decay in flight
 - 10¹³ K+ decays, 10% acceptance, bkg rejection >10¹²

NA62: Broad K decays program

 Unprecedented statistics for many K+ decay modes

Key point: **digital trigger**

- Very flexible
 - Trigger path in common with readout electronics (FPGA based)
- GPU trigger

Process	Violates	90% C.L. limit	NA62 Acceptance
$K^+ \rightarrow \pi^+ \mu^+ e^-$	LF	< 1.3 x 10 ⁻¹¹	~10%
$K^+ \rightarrow \pi^+ \mu^- e^+$	LF	< 5.2 x 10 ⁻¹⁰	~10%
K+→π ⁻ μ+e+	LF , LN	< 5.0 x 10 ⁻¹⁰	~10%
K ⁺ →π ⁻ e ⁺ e ⁺	LN	< 6.4 x 10 ⁻¹⁰	~5%
$K^+{\rightarrow}\pi^{-}\mu^{+}\mu^{+}$	LN	< 1.1 x 10 ⁻⁹	~20%
$K^+ \rightarrow \mu^- \nu e^+ e^+$	LN	< 2.0 x 10 ⁻⁸	~2%
$\pi^0 \rightarrow \mu^- e^+$	LF	< 3.4 x 10 ⁻⁹	~2%
$\pi^0 \rightarrow \mu^+ e^-$	LF	< 3.8 x 10 ⁻¹⁰	~2%
$\pi^+ \rightarrow \mu^- e^+ e^+ v$	LF	<1.6x10 ⁻⁶	~2%

NA48/2: the $\mu\mu$ sample

Three sterile (Majorana) neutrinos
 N1 is the lightest (dark matter) N2,
 N3 produce v masses and solve
 SM neutrinos problems and
 Baryon asymmetry

- Inflatons: Shaposhnikov-Tkachev [PLB 639 (2008) 414]
 - Add a real scalar field (inflaton χ) to vMSM to explain Universe homogeneity and isotropy
 - Mixing with Higgs boson: θ
 - mχ < 354 MeV/c² with kaons (**K⁺→**π⁺χ)
 - $\chi \rightarrow \mu^+ \mu^-$ considered in this analysis

$$BR(K^{\pm} \to \pi^{\pm}\chi) = 1.3 \times 10^{-3} \left(\frac{2|p_{\chi}|}{M_K}\right) \theta^2$$

LNV & LNC selection

- 3 track topology
 - Opposite/same sign muons
 - No missing momentum
 - Total mass close to K mass (5 MeV/c²)
- Background:

- 1.64x10¹¹ K decays in fiducial region
 - Opposite sign: **3489** events
 ((0.36±0.10)% bkg)
 - Same sign: 1 events (1 bkg)

LNC: mass scan

Data

300

300

320

320

 $n_{obs} - n_{exp}$

 $n_{obs} \oplus n_{exp}$

340

340

9

Assumed X mass, MeV/c²

- About **280** mass bins
- The signal significance never exceed 3σ: no signal observed

LNV: mass scan

- UL 8.6x10⁻¹¹ @ 90% CL
 - Mass scan:
 - About 280 mass bins
 - The signal significance never exceed 3σ: no signal observed
 - Both for opposite/same sign muons the acceptance is studied as a function of the heavy neutrinos/inflaton lifetime

NA48/2 µµ sample summary & NA62 prospects

Sample of about **2x10¹¹ K** decays, from 2003+2004 NA48/2 run

- Search for LNV K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}$: UL 8.6x10⁻¹¹ @ 90% CL
- Search for Majorana sterile neutrinos K⁺ \rightarrow µ⁺N₄ (N₄ \rightarrow π⁻µ⁺): UL ~10⁻¹⁰ for τ <100 ps
- Search for heavy sterile neutrinos K⁺ \rightarrow µ⁺N₄ (N₄ \rightarrow π⁺µ⁻): UL ~10⁻⁹ for τ <100 ps
- Search for inflatons K⁺ $\rightarrow \pi^+$ X (X $\rightarrow \mu^+\mu^-$): UL ~10⁻⁹ for τ <100 ps
- NA62 will improve both statistics and systematics: potentially two orders of magnitude

Dark Interactions – 6/10/2016 BNI

G.Lamanna

Dark Photon

- The most economic SM extension in the dark sector is the introduction of a vector field through a new U(1) symmetry \sim
 - The dark photon (A') is the boson associated to this symmetry

$$\mathcal{L}_{mix} = -\frac{\mathcal{E}}{2} F_{\mu\nu}{}^{QED} F^{\mu\nu}{}_{dark}$$

 In the most generic case the mixing with quarks and leptons could be different (qf)

$$\mathcal{L} \sim \mathbf{g}' q_f \overline{\psi_f} \gamma^{\mu} \psi_f U'$$

- The Dark Photon could be a good dark matter portal candidate and can explain positrons excess
- For free: the dark photon could explain the g-2 anomaly [M. Pospelov Phys.Rev. D80 (2009) 095002]

Dark Photon in π^0 decays

In the mass region allowed for the π^0 , the A' width is

$$\Gamma_{A'} \approx \Gamma(A' \to e^+ e^-) = \frac{1}{3} \alpha \varepsilon^2 m_{A'} \sqrt{1 - \frac{4m_e^2}{m_{A'}^2}} \left(1 + \frac{2m_e^2}{m_{A'}^2}\right) \approx \alpha \varepsilon^2 m_{A'}/3$$

Status of visible searches in early 2015

- The visible decay (in 10^{-4} fermions) is 10⁻⁵ constrained by aµ.50 various experiments: 10⁻⁶ Beam dump E774 Fix target 10⁻⁷ Meson decays Room for Dark 10⁻⁸ E141
 - Photon parameters to explain g-2
 - The invisible decay has much less constraints

π^0_D Data selection

(1.57±0.05)x10¹¹ kaon decays

K⁺→ $\pi^{+}\pi^{0}_{D}$ selection

- m_K in 20 MeV, $m_{\pi 0}$ in 8 Mev, no missing momentum
- 1.38x10⁷ events
 selected

K⁺→ $π^0_D μ^+ ν$ selection

- Neutrino mass compatible with zero, $m_{\pi 0}$ in 8 MeV, missing total and transverse momentum
- 0.31x10⁷ events selected

Total: 1.69x10⁷

UL from Dalitz decays

Dark Interactions – 6/10/2016 BNI

G.Lamanna –

The dark photon should appear as a **narrow peak** in the π^0_D spectrum

Mass scan:

- 404 bins in 9 MeV/c²<m_{A'}<120 MeV/c²
- For each beam the confidence interval is obtained comparing observed and expected events.
- Local significance never exceed 3σ: **no dark photon signal**

NA48/2 results on Dark Photon

- The limit obtained is background limited
- Modest
 improvement with
 larger statistics
 ~(1/N_K)^{1/2}
 - If A' couples with 10^{-8} quarks and decays 10^{-9} in leptons then the g-2 explanation is 10^{-10} almost ruled out. (see also KLOE results 10^{-11} Y.Kolomensky) 10^{-11}

Visible decay searches now

[Phys.Lett. B746 (2015) 178]

Hidden search in NA62 (>2018)

- A' are produced either in the target or in the TAX
 - Hadrons are stopped in the TAX
 - NA62 decay region and detectors essentially untouched
- 10¹⁸ POT per year

Long lived dark photon

- A' decays in ee or $\mu\mu$
- 90% C.L. assuming 2x10¹⁸ POT and 0 background
- Only A' produced in the target (not in the dump) are considered

HNL & ALPs

- Heavy Neutral Leptons: assuming 2x10¹⁸ POT, NA62 could cover a broad region in MeV-GeV
 - HNL→πe, πμ
 - Sensitivity will increase including semileptonic and hadronics decay modes

20

- ALPs: are produced by Primakoff effect [JHEP 1602 (2016) 018], and decay in $\gamma\gamma$
 - Significant contribution below 200 MeV (assuming 0 bkg and 4x10⁷)
 - Preliminary test in 2015 (10¹⁴ POT) demonstrates that 0 bkg is achievable

Conclusions

- **NA48/2** has improved limits on the search for dark matter portals and exotics
 - HNL, Majorana, Inflatons, Dark Photons
- **NA62** is taking data to search for ultra-rare $\pi v v$ decay.
- Thanks to a very flexible trigger system, along with the main goal, other searches will be carried out with huge statistics and better resolution.
- The possibility to run in "dump" mode to improve searches of DP (vector portal), HNL (neutrino portal), ALPs (axial portal) in higher masses regions will be also considered.

G.Lamanna – Dark Interactions – 6/10/2016 BNL

Prospects from $K^+ \rightarrow \pi^+ A'$

K⁺ $\rightarrow \pi^+$ A' is favorite wrt $\pi^0 \rightarrow \gamma$ A' from an experimental point of view:

- Lower irreducible background $(\pi ee vs \pi^0_D)$
- Higher flux (x4)
- Higher acceptance
- But the BR is ~10⁻⁴ wrt π^0 . The expected limit (for $m_{A'} > m_{\pi 0}$) is $\epsilon^2 \sim 10^{-5}$. Not competitive with existing limits

[DavoudiasI, Lee, Marciano PRD89 (2014) 095006] ot

Protophobic DP interaction

A recent results in Be8 [PRL 116, 042501 (2016)] indicates a possible DP in the region excluded by NA48/2

This is possible if the DP is proto-phobic. In this case the production through the π⁰ decay is prohibited

ProtoPhobic coupling

Majorana neutrino in second family

GPU trigger: almagest algorithm

- Tesla K20
- Only computing time presented
- <0.5 us per event (multirings) for large buffers

