Decays to dark sector particles at ATLAS

Dark Interactions Workshop - BNL

Andrea Coccaro

dedicated to the memory of Guido Ciapetti (1941-2016)

Andrea Coccaro

4-7 Oct, 2016 - Decays to dark sector particles at ATLAS

(日) (同) (三) (三)

Hidden sector

Back in the '30s, the bricks of particle physics were just photons, electrons and nucleons

- spectrum of the β decay was a surprise
- Pauli proposed a radical solution involving the presence of a third particle
- ▶ $n \rightarrow p + e^- + \overline{\nu}$

Perfect example of a hidden sector:

- 1. neutrino is electrically neutral
- 2. very weakly interacting (and also light)
- 3. interaction through a portal $(\overline{p}\gamma^{\mu}n)(\overline{e}\gamma_{\mu}\nu)$

Andrea Coccaro

Hidden sector

Back in the '30s, the bricks of particle physics were just photons, electrons and nucleons

- spectrum of the β decay was a surprise
- Pauli proposed a radical solution involving the presence of a third particle
- $n \rightarrow p + e^- + \overline{\nu}$

Perfect example of a hidden sector:

- 1. neutrino is electrically neutral
- 2. very weakly interacting (and also light)
- 3. interaction through a portal $(\overline{p}\gamma^{\mu}n)(\overline{e}\gamma_{\mu}\nu)$

Do we have a "puzzling β decay spectrum" for searching for a hidden sector? Yes, and much more.

Andrea Coccaro

Exotic Higgs decays

New fundamental scalar consistent with SM Higgs boson.

Constraints from observing the Higgs boson in the various SM channels allow non-SM BR of O(20-30%).

Large experimental uncertainties on the Higgs boson couplings.

Total width of $\sim 4~\text{MeV}$ from SM contributions

The best way to know if the Higgs has a $\sim 10\%$ non-SM branching ratio is to directly look at exotic decays.

Andrea Coccaro

Projections of coupling measurements

New fundamental scalar consistent with SM Higgs boson.

Constraints from observing the Higgs boson in the various SM channels allow non-SM BR of O(20-30%).

Large experimental uncertainties on the Higgs boson couplings.

Total width of $\sim 4~\text{MeV}$ from SM contributions

The best way for the next decade to know if the Higgs has a $\sim 10\%$ non-SM branching ratio is to directly look at exotic decays. ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Andrea Coccaro

Andrea Coccaro

Portals to the hidden sector

Following an EFT approach, only three renormalizable portals are possible.

Neutrino portalLHNHiggs portal $(\mu S + \lambda S^2) H^{\dagger} H$ Vector portal $\frac{\epsilon}{2} B_{\mu\nu} Z^{\mu\nu}$

A wide phenomenology can be accomodated by connecting the SM to complex dark sectors (hidden valley, dark SUSY, etc.) giving rise to a class of searches relying on unconventional signatures.

Andrea Coccaro

Unconventional signatures

The particle in the hidden sector may be

- weakly-coupled to the SM giving rise to long-lived particle decay
- light giving rise to collimated decay products

Various challenges easily arise, for example

- triggering on displaced decays of neutral long-lived particles
- triggering on low-mass objects
- reconstruction of physics objects
- access of control region for estimating backgrounds

Outline / References

ATLAS public results based on 13-TeV data

1. Displaced jets in the hadronic calorimeter [ATLAS-CONF-2016-103]

2. Displaced lepton-jets [ATLAS-CONF-2016-042]

ATLAS public results based on 8-TeV data

3. Higgs to ZZ_d and Z_dZ_d [ATLAS-CONF-2015-003]

4. Displaced jets in the tracker and muon spectrometer [PRD 92 (2015) 012010]

- 5. Displaced jets in the hadronic calorimeter [PLB 743 (2015) 15-34]
 - 6. Displaced lepton-jets [JHEP 11 (2014) 088]
 - 7. Prompt lepton-jets [JHEP 02 (2016) 062]

ATLAS tools for unconventional signatures

8. Triggering on long-lived neutral particles [JINST 8 (2013) P07015]

9. Vertexing in the muon spectrometer [JINST 9 (2014) P02001]

I will be mainly talking of 1., 2., 3. plus some Run-II improvements and prospects for new results with the entire 2015-2016 dataset.

Displaced jets in the hadronic calorimeter

Andrea Coccaro 4-7 Oct, 2016 - Decays to dark sector particles at ATLAS

Benchmark model

	lumi [/fb]	m_{Φ} [GeV]	<i>m</i> ₅ [GeV]
8 TeV result	20.3	$100 \div 900$	$10 \div 150$
13 TeV result	3.2	$400 \div 1000$	$50 \div 400$

Major analysis changes

- 1. BDT for discriminating signal and QCD jets
- 2. simplified data-driven estimate of QCD jets
- 3. exotics Higgs channel to be restored with a new topological algorithm running at L1

Triggering on displaced decays

Signature-driven triggers for displaced decays of neutral long-lived particles. Each trigger is dedicated for a particular region of the ATLAS detector.

Detector region	Key feature	Trigger name
Tracker	Jet with track isolation	Trackless Jet trigger
Hadronic calorimeter	Isolated jet with very low EM fraction	Calo-ratio trigger
Muon spectrometer	Isolated cluster of muon Rols	Muon Rol Cluster trigger

Calo-ratio trigger

- tau candidate at L1 with at least 60 GeV
- no tracks above 2 GeV in the jet cone
- $\log(E_{HAD}/E_{EM}) > 1.2$
- beam halo removal using calorimeter cell timing

Analysis ingredients

- two displaced hadronic jets to suppress the background
- removal of cosmic rays and non-collision events
- BDT with 13 input variables to discriminate between by signal-jets and QCD-jets
- ABCD for the QCD background
- ▶ 24 observed events and $18.4 \pm 6.3 \pm 6.6$ predicted

Andrea Coccaro

Results

	$m_s = 50 \ G$	$GeV m_s =$	$100 \ GeV$	$m_s = 15$	$0 \ GeV = m$	$a_s = 400 \ GeV$
	Decay	length range	excluded	l at 95% C	L for $\sigma \times B$	R = 1 pb
$m_{\Phi} = 400 \ GeV$	(0.20, 2.4)) m (0.5	2, 4.6) m		-	-
$m_{\Phi} = 600 \ GeV$	(0.09, 2.7)) m	-	(0.38,	8.2) m	-
$m_{\Phi} = 1$ TeV	(0.05, 2.0)) m	-	(0.14,	7.2) m	(0.78, 16) m
Mass Point (GeV, GeV	T) JES (%)	JES EMF (%)	JER (%)	Trigger (%)	Pile-up (%)	Luminosity (%)
(400,150)	3.3	14	0.43	2.3	4.0	2.1
(600,150)	1.5	5.4	0.40	1.5	0.56	2.1
(1000,150)	0.51	1.8	0.05	1.0	2.0	2.1

- < ロ > < 同 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Andrea Coccaro

Displaced lepton-jets

Andrea Coccaro 4-7 Oct, 2016 - Decays to dark sector particles at ATLAS

Benchmark model

Major analysis changes

- 1. dedicated displaced muon trigger
- 2. enhancement in the reconstruction of collimated muons
- 3. result in the ϵ vs m_{γ_d} to be reconsidered

Andrea Coccaro

Lepton-jet definition

 γ_d branching ratios at 400 MeV

►
$$BR(e^+e^-) = 45\%$$
, $BR(\mu^+\mu^-) = 45\%$, $BR(\pi^+\pi^-) = 10\%$

Andrea Coccaro

Analysis ingredients

New dedicated trigger available since Run-II

Higgs $\rightarrow 2\gamma_d + X$	Run2	Run1	Run2	5.0
	m=125 GeV	m=125 GeV	m=800 GeV)/s/(
Tri-muons	2.0	2.9	2.4	Ļ
Narrow-scan	10.6	N/A	23.0	ы
Calo-ratio	0.3	2.3	9.7	acti
OR of all	11.9	4.6	32.0	fr
Higgs $\rightarrow 4\gamma_d + X$	Run2	Run1	Run2	
	m=125 GeV	m=125 GeV	m=800 GeV	
Tri-muons	4.9	5.8	7.8	
Narrow-scan	8.3	N/A	38.4	
Calo-ratio	0.1	0.5	7.4	
OD (11				

Narrow-scan approach

- leading muon seeded by a L1 muon
- sub-leading muon without a L1 seed searched at the HLT in a "narrow" cone by "scanning" the MS detector

Analysis ingredients

- track isolation implemented for removing multi-jet background and validated in Z → µµ events
- cosmics background estimated in the empty bunches
- QCD multi-jet background calculated with ABCD method
- main systematics evaluated using $J/\Psi \rightarrow \mu\mu$ events
- \blacktriangleright 285 observed events and 231 \pm 12 \pm 62 predicted

Systematic uncertainty	Value
Luminosity	2.1%
Trigger: Narrow Scan	6.0%
Trigger: Tri-muon-MS-only	5.8%
Trigger: CalRatio	11.0%
Reconstruction efficiency of single γ_d	15.0%
Effect of pile-up on $\Sigma p_{\rm T}^{\rm ID}$	5.1%
Reconstruction of the $p_{\rm T}$ of the $\gamma_{\rm d}$	10.0%

Andrea Coccaro

Results

FRVZ model	$m_{\rm H} ({\rm GeV})$	Excluded $c\tau$ [mm]
Higgs $\rightarrow 2\gamma_{\rm d} + X$	125	$2.2 \le c\tau \le 111.3$
Higgs $\rightarrow 4\gamma_{\rm d} + X$	800	$3.8 \le c\tau \le 163.0$
Higgs $\rightarrow 2\gamma_{\rm d} + X$	125	$0.6 \le c\tau \le 63$
Higgs $\rightarrow 4\gamma_{\rm d} + X$	800	$0.8 \le c\tau \le 186$

Hadron-collider experiments entered into the mass vs ϵ plot of the vector-portal interpretation

Higgs to ZZ_d and Z_dZ_d

Andrea Coccaro 4-7 Oct, 2016 - Decays to dark sector particles at ATLAS

Higgs to dark Z

Main ingredients:

- analysis explicitly exploiting the Higgs decay topology requiring the four-lepton invariant mass to be within 115 and 130 GeV
- similar to the SM Higgs analysis in many aspects with different requirements in the di-lepton invariant mass
- main backgrounds are tt, Z+jets and SM Higgs

Higgs to dark Z

Higgs to $Z_d Z_d$ Higgs to ZZ_d _{⊐.}≂ 0.50 95% CL upper limit on $R_{\rm B}$ 10 F ATLAS Preliminary Final State: 4e+2e2u+ Bound on 0.45 ATLAS Preliminary Observed - Observed Expected √s=8 TeV, 20.7 fb⁻¹ 0.40 √s = 8TeV. 20.3 fb¹ ···· Expected ±1σ ±1σ 0.35 ±2σ ±2σ 35% CL Upper 0.30 0.25 0.20 0.15 10 0.10 0.05 0.00 20 25 15 30 35 40 45 50 15 20 25 30 35 40 45 50 55 60 m_z [GeV] m_z [GeV]

No events above the background prediction, limits on the branching ratio relative to the SM Higgs process

$$R_B = \frac{BR(H \to ZZ_d \to 4\ell)}{BR(H \to ZZ_d + \ell) + BR(H \to ZZ^* + 4\ell)} ; \mu_d = \frac{\sigma \times BR(H \to Z_d Z_d \to 4\ell)}{\sigma \times BR(H \to ZZ^* \to 4\ell)}$$

Andrea Coccaro

Prospects (just a few words)

Andrea Coccaro 4-7 Oct, 2016 - Decays to dark sector particles at ATLAS

- 1. Low-mass / New triggers for overlapping energy deposits?
- 2. Mass-gap / Decays to pion-jets? Displaced search in the outer part of the tracker?
- 3. Very-displaced region / Single LLP decays? (1605.02742) MATHUSLA? (1606.06298)
- 4. High-mass / Z_d search

Data-driven model-independent searches for LLP

LLP searches typically working in a zero-background regime

by requiring stringent cuts and two displaced objects

A new strategy has been proposed in 1605.02742 (AC, D. Curtin, H. Lubatti, H. Russell, J. Shelton)

- just one displaced object with data-driven background estimate
- generalised ABCD method with (DV isolation variable) vs (some kinematic variable capturing the rest of the event)
- full toy estimate demonstrated the superior reach at longer lifetimes
- methodology relies on background triggers implemented in ATLAS

Single-displaced analyses should become possible

displaced object + X

Data-driven model-independent searches for LLP

dashed lines ATLAS-like displaced search with 2 vertices in the muon spectrometer analogous search with just one displaced vertex

Andrea Coccaro

Conclusions

Exciting program of dark sector searches at colliders

exotic Higgs boson decays play a crucial role in the quest

Looking for hidden sector poses experimental challenges

- detectors are designed for prompt physics
- triggers and reconstruction may not be adequate

Improvements in Run-II despite higher pile-up and harsher conditions

- narrow-scan muon triggers
- topological algorithm at L1 for decays in the hadronic calorimeter
- vertexing in the muon spectrometer running for every triggered event
- more to come

Outlook

Most of the searches targeting 2017 winter conferences, x10 luminosity already recorded!

Andrea Coccaro

BACK-UP

Andrea Coccaro 4-7 Oct, 2016 - Decays to dark sector particles at ATLAS

$\log_{10}(E_{\rm H}/E_{\rm EM})$	The base-10 logorithm of the ratio of the energy in the HCal to ECal. If no energy is present in the ECal, a large number is used as input to the BDT instead.		
Jet Width	The $p_{\rm T}$ -weighted sum of the ΔR between each cluster the jet is built from and the jet axis.		
Leading cluster Longitudinal length	How far the highest $p_{\rm T}$ cluster has spread in the longitudinal direction		
Jet p _T	Training events are reweighed so that the jet $p_{\rm T}$ distribution is flat. This allows the BDT to look for correlations between other variables and the jet $p_{\rm T}$ without using jet $p_{\rm T}$ directly as a discrimi- nating variable.		
Leading cluster lateral width	How far the highest $p_{\rm T}$ cluster has spread in the latitudinal direction.		
Leading Jet Cluster Shower Cen- ter	The distance from the inner edge of the ECal to the highest $p_{\rm T}$ cluster's center along the jet axis. A zero would mean this was on the edge of the ECal.		
ΔR to Closest 2 GeV Track	The ΔR between the jet axis and the closest 2 GeV track. Or 0.4 if there is no such track.		
Radius of the leading cluster	The radius from the beam spot to the highest $p_{\rm T}$ cluster.		
Cluster Energy Density	The $\sum_{i=1}^{i} \frac{E_i^2/V_i}{\sum E_i}$, where E_i is the energy of each cell, and V_i is the volume of the cell in the highest $p_{\rm T}$ cluster in the jet. Only positive energy cells are considered.		
Number of tracks	The number of tracks with $p_{\rm T} > 2 \ GeV$ within a $\Delta B < 0.2$ of the jet axis		
Sum $p_{\rm T}$ of all tracks	The sum $p_{\rm T}$ of all tracks within $\Delta R < 0.2$.		

Andrea Coccaro