Future Prospects in Cosmology

Raphael Flauger

Dark Interactions 2016, BNL, October 7, 2016

Current Status

Current Status

Observations of supernovae, cosmic microwave background, and galaxy redshift surveys are in good agreement with the simple six-parameter LCDM model.

Supernovae

Provide measurement of

• Hubble rate

 $H_0 = 73.24 \pm 1.74 \mathrm{km s}^{-1} \mathrm{Mpc}^{-1}$ (Riess et al. 2016)

• functional relation between luminosity distance and redshift

(Betoule et al. 2014)

Parameter Constraints

Parameter	2015F(CHM)	2015F(CHM) (Plik)
100θ _{MC}	1.04094 ± 0.00048	1.04086 ± 0.00048
$\Omega_b h^2$	0.02225 ± 0.00023	0.02222 ± 0.00023
$\Omega_c h^2$	0.1194 ± 0.0022	0.1199 ± 0.0022
H_0	67.48 ± 0.98	67.26 ± 0.98
$n_{\rm s}$	0.9682 ± 0.0062	0.9652 ± 0.0062
$\Omega_{\rm m}$	0.313 ± 0.013	0.316 ± 0.014
σ_8	0.829 ± 0.015	0.830 ± 0.015
τ	0.079 ± 0.019	0.078 ± 0.019
$10^{9}A_{\rm s}e^{-2\tau}$	1.875 ± 0.014	1.881 ± 0.014

LCDM+X

Clustering

 Small tensions exist between the Planck TT data and a number of low redshift observations

Clustering

 A milder tension also exists between Planck lensing and cosmology predicted by Planck TT

Clustering

 Both Planck TE and Planck EE cosmologies in excellent agreement with Planck lensing

The Hubble Constant

Reid et al. 2013 Riess et al. 2011 Efstathiou 2013 Hinshaw et al. 2013 Ade et al. 2015 Spergel, Flauger, Hlozek 2013

The Hubble Constant

Reid et al. 2013 Riess et al. 2016 Efstathiou 2013 Hinshaw et al. 2013 Ade et al. 2015 Spergel, Flauger, Hlozek 2013

Upcoming and Future Experiments

Cosmic Surveys

Stage III: now-2020

Cosmic Surveys

Stage IV: 2020-2030

Stage III: now-2020

Stage III.5: soon-2020

http://simonsobservatory.org

 A five year, \$45M+ program to pursue key Cosmic Microwave Background science targets, and advance technology and infrastructure in preparation for CMB-S4.

Merger of the ACT and POLARBEAR/Simons Array teams.

- Tentative plans include:
 - Major site infrastructure
 - Technology development (detectors, optics, cameras)
 - Demonstration of new high throughput telescopes.
 - CMB-S4 class receivers with partially filled focal planes.
 - Data analysis

POLARBEAR/Simons Array

Stage IV: 2020-2030

Potentially Space Missions

LiteBIRD, PIXIE, COrE

Radio Interferometers

Future Prospects

Future Prospects

For this workshop, perhaps the most interesting topics are

- Primordial gravitational waves
- Light dark sector relics
- Neutrino mass
- Dark matter

Detection of primordial B-modes would provide a measurement of the Hubble rate during inflation

and via the Friedmann equation

$$V_{\rm inf}^{1/4} = 1.04 \times 10^{16} \,\mathrm{GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

CMB-S4 could detect r=0.01 at high significance

CMB-S4 Science Book (<u>http://www.cmbs4.org</u>)

Even an upper limit from CMB-S4 is interesting

If the inflationary model naturally explains the observed value of the spectral index, i.e.

$$n_{\rm s}(\mathcal{N}) - 1 = -\frac{p+1}{\mathcal{N}}$$

then the inflationary part of the potential is either

$$V(\phi) = \mu^{4-2p} \phi^{2p}$$

or

$$V(\phi) = V_0 \exp\left[-\left(\frac{\phi}{\Lambda}\right)^{\frac{2p}{p-1}}\right] \qquad (p \neq 1)$$

The characteristic scale in latter case is $M = \Lambda \frac{|1-p|}{r}$

An upper limit with CMB-S4 would disfavor all models of inflation that naturally explain n_s with super-Planckian characteristic scale M

Light Relic

Particle that is stable on cosmological time scales and light enough to be relativistic at recombination

Contribute to the energy density in radiation

$$\rho_{\rm rad} = \frac{\pi^2 k_{\rm B}^4}{15\hbar^3 c^3} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right] T_{\gamma}^4$$

with $N_{\rm eff}=3.046$ in the Standard Model

The CMB is sensitive to $N_{\rm eff}$ through

- the damping tail
- the phase of accoustic oscillations
- lensing

A detection of $\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046 \neq 0$ would indicate physics beyond the Standard Model or a nonstandard cosmology.

Many well-motivated models addressing open problems in particle physics lead to light relics

- Axions (spin-0)
- Sterile/Dark sector neutrinos (spin-1/2)
- Dark radiation (spin-I)
- Gravitinos (spin-3/2)

Contribution to $\Delta N_{\rm eff}$ from scalars, fermions, vectors that were in thermal equilibrium with the Standard Model and decoupled at T_F

Natural targets:

- Spin-1/2, 1, 3/2 particles predict* $\Delta N_{
 m eff} \geq 0.047$
- Real scalars like the QCD axion $predict^*$

 $\Delta N_{\rm eff} \ge 0.027$

Currently studied configurations for CMB-S4 can achieve $\sigma(N_{\rm eff}) \approx 0.03$.

(*) assumes that there are no states that annihilate into standard model particles after freeze-out of the relic

CMB-S4 Science Book (<u>http://www.cmbs4.org</u>)

Neutrinos

Structure formation is suppressed on scales smaller than the free streaming scale. This can be detected in large scale structure surveys and through lensing of the cosmic microwave background.

CMB-S4 Science Book (<u>http://www.cmbs4.org</u>)

Neutrinos

Complementary to lab experiments

Neutrinos

Complementary to lab experiments

DESI+CMB-S4: $\sigma(m_{\nu}) \approx 0.02 \,\mathrm{eV}$

 3σ measurement even for normal hierarchy

Dark Matter

CMB-S4 Science Book (<u>http://www.cmbs4.org</u>)

(only applies to s-wave annihilation)

Dark Matter

Abundance of substructure from lensing, here from ALMA

(Hezaveh et al. 2016)

Dark Matter

Abundance of substructure from lensing, here from ALMA

(Hezaveh et al. 2016)

Dark Energy, Modified Gravity,...

• BAO will map the expansion history extremely well and constrain any departures from a cosmological

constant

• Redshift space distortions will allow to measure the growth of structure and provide stringent tests of general relativity

Conclusions

- Our understanding of the early universe has improved significantly over the past two decades
- Although there are small tensions, all data remains consistent with the simple LCDM model
- Many experiments are already taking data, many will soon come online and will constrain light relics, neutrinos, dark matter, ...
- How they can best be used to constrain dark interactions has likely not been fully explored
- The next decade will be eventful and we should continue to learn a lot about the early universe

Thank you