Lattice Gauge Theory insights on Dark Matter

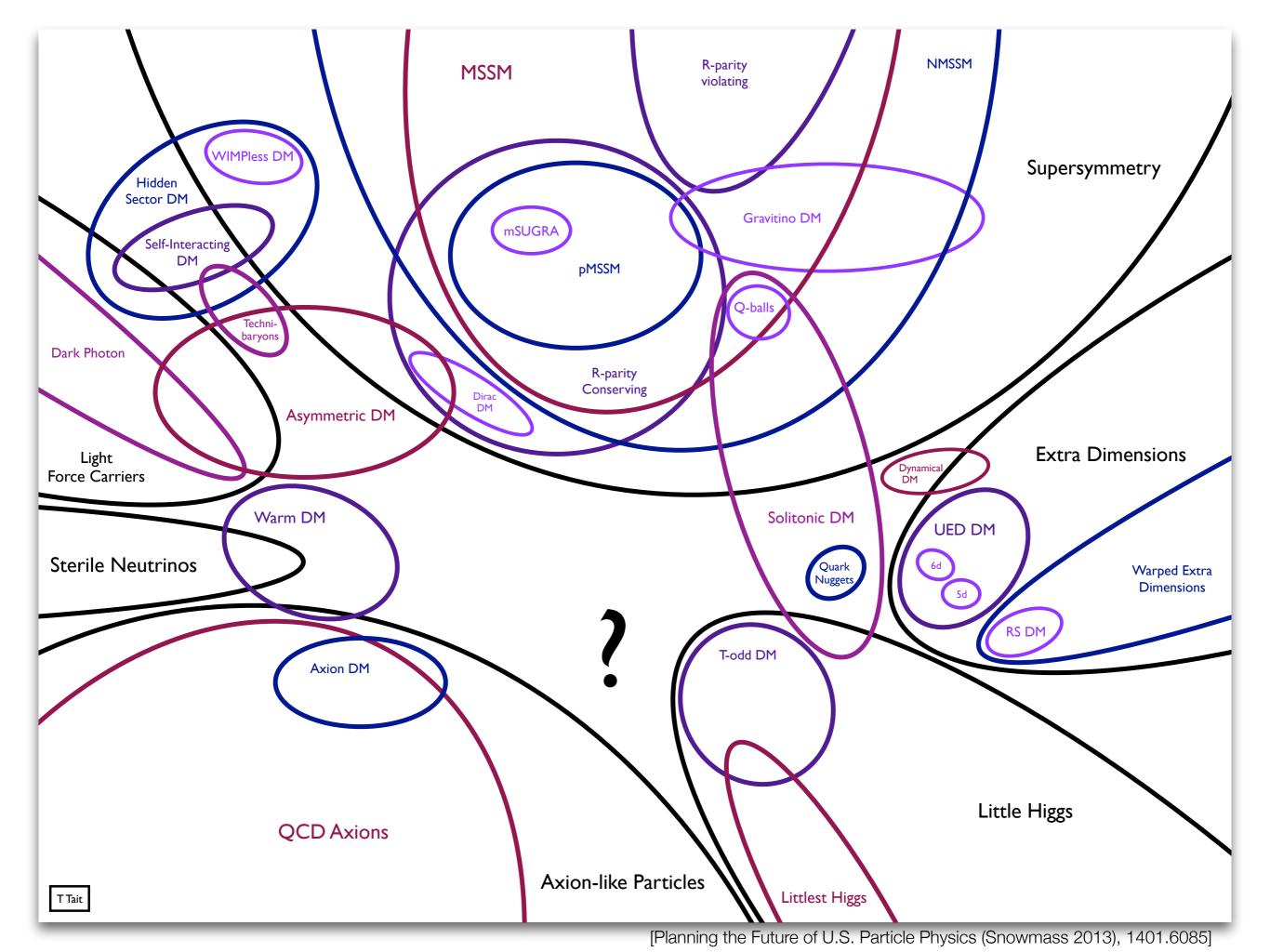
Enrico Rinaldi

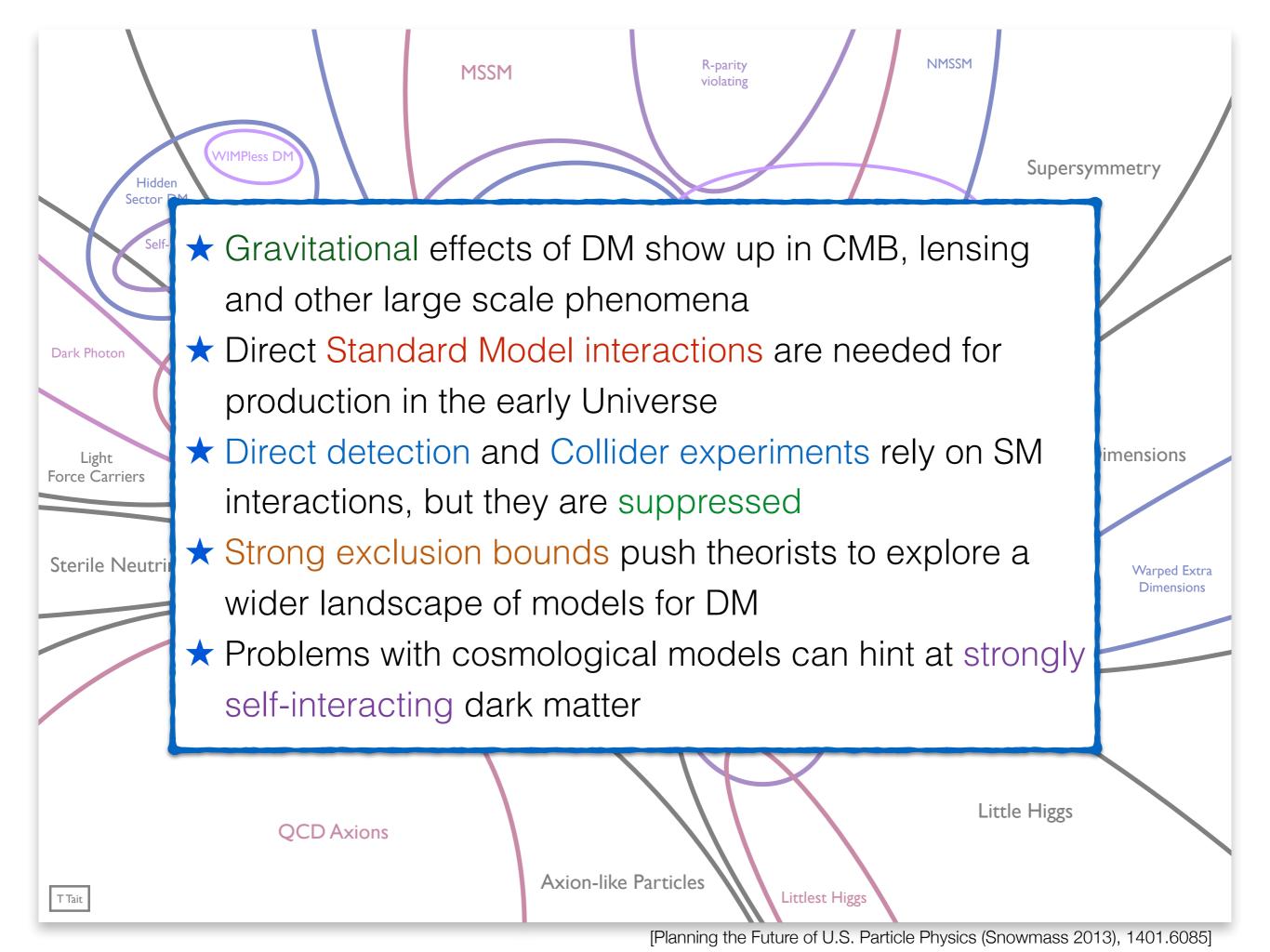
RIKEN BNL Research Center

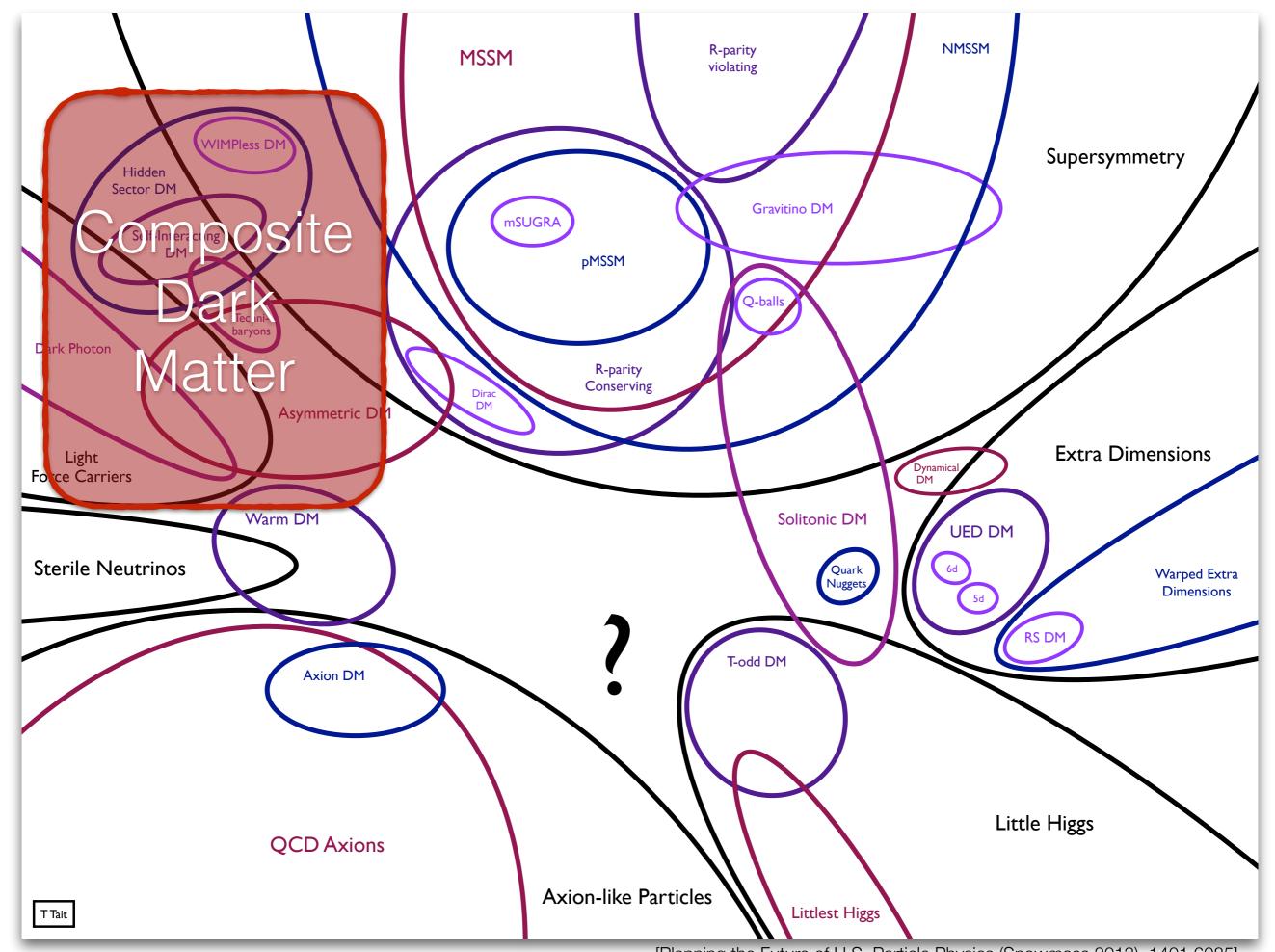
This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the LLNL LDRD "Illuminating the Dark Universe with PetaFlops Supercomputing" 13-ERD-023.

Computing support comes from the LLNL Institutional Computing Grand Challenge program.

What is Dark Matter?



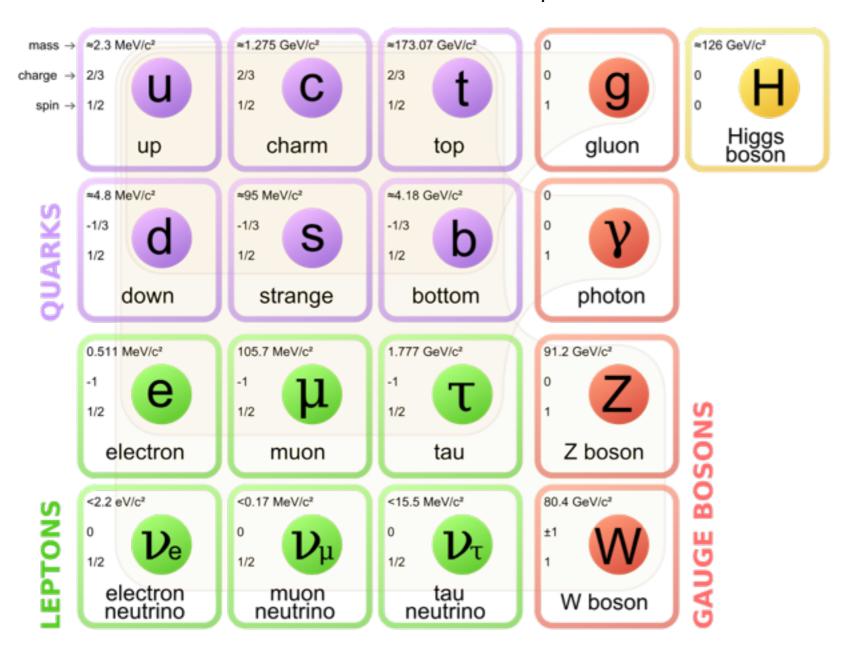




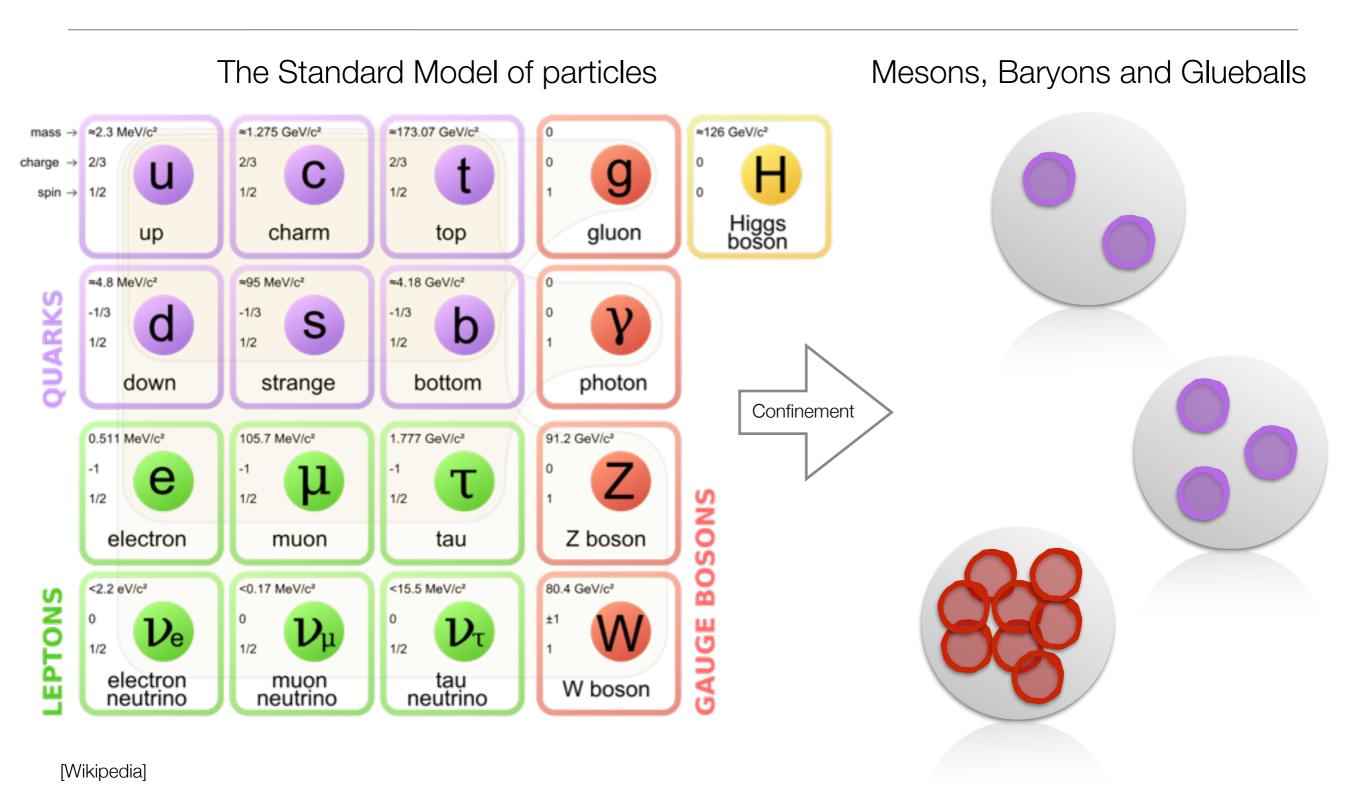
[Planning the Future of U.S. Particle Physics (Snowmass 2013), 1401.6085]

A very familiar picture

The Standard Model of particles



A very familiar picture



◆ Dark Matter is a composite object

◆ Dark Matter is a composite object

e.g. technibaryon or hidden glueball

- ◆ Dark Matter is a composite object
- Interesting and complicated internal structure

e.g. technibaryon or hidden glueball

- Properties dictated by strong dynamics
- Self-interactions are natural

- ◆ Dark Matter is a composite object
- Interesting and complicated internal structure

e.g. technibaryon or hidden glueball

Properties dictated by strong dynamics

Similar to QCD

Self-interactions are natural

- ◆ Dark Matter is a composite object
- Interesting and complicated internal structure

e.g. technibaryon or hidden glueball

Properties dictated by strong dynamics

Similar to QCD

- Self-interactions are natural
- ◆ DM composite is neutral and stable
- Constituents may interact with Standard Model particles

structure

e.g. technibaryon or

- ◆ Dark Matter is a composite object
- ♣ Interesting and complicated internal

Properties dictated by strong dynamics

Similar to QCD

- Self-interactions are natural
- ◆ DM composite is neutral and stable

Chance to observe them in experiments and give the correct relic abundance

 Constituents may interact with Standard Model particles

- ◆ Dark Matter is a composite object
- Interesting and complicated internal structure

e.g. technibaryon or hidden glueball

Lattice Field Theory methods

Properties dictated by strong dynamics

Similar to QCD

- Self-interactions are natural
- ◆ DM composite is neutral and stable

Chance to observe them in experiments and give the correct relic abundance

 Constituents may interact with Standard Model particles

Stability is a direct consequence of accidental symmetries

Stability is a direct consequence of accidental **symmetries**

Neutrality follows naturally from **confinement** into singlet objects wrt. SM charges

Stability is a direct consequence of accidental **symmetries**

Neutrality follows naturally from **confinement** into singlet objects wrt. SM charges

Small interactions with SM particles arise from form factor suppression (higher dim. operators)

Stability is a direct consequence of accidental **symmetries**

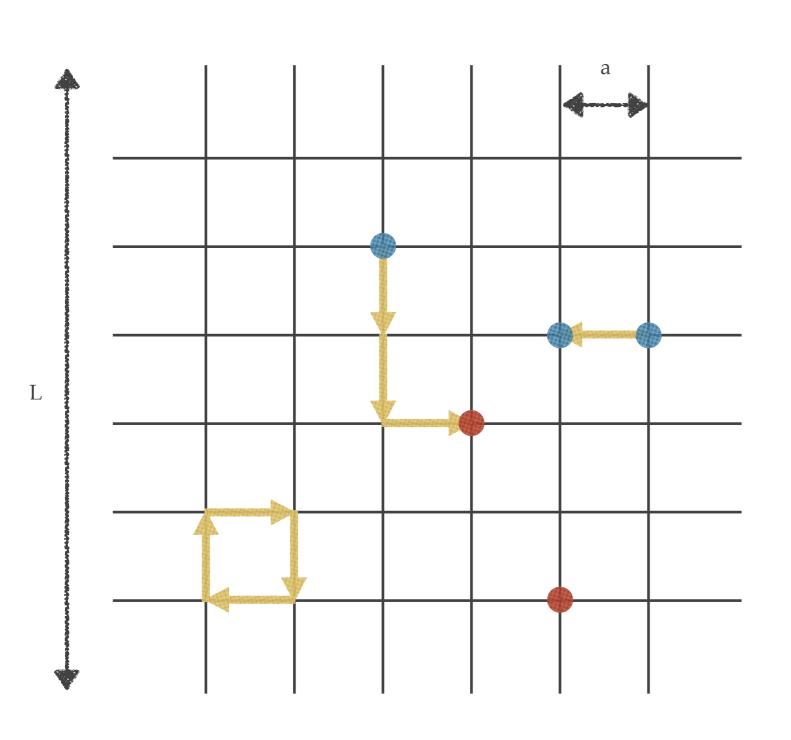
Neutrality follows naturally from **confinement** into singlet objects wrt. SM charges

Small interactions with SM particles arise from form factor suppression (higher dim. operators)

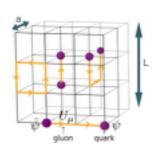
Self-interactions are included due to strongly coupled dynamics

gluon quark

Lattice Gauge Theory - basics



- Discretize space and time
 - lattice spacing "a"
 - lattice size "L"
- Keep all d.o.f. of the theory
 - not a model!
 - no simplifications
- Amenable to numerical methods
 - Monte Carlo sampling
 - use supercomputers
- Precisely quantifiable and improvable errors
 - Systematic
 - Statistical



Importance of lattice field theory simulations

- ◆ lattice simulations are needed to solve the strong dynamics
- naturally suited for models where dark fermion masses are comparable to the confinement scale
- <u>controllable</u> systematic errors and room for <u>improvement</u>
- Naive dimensional analysis and EFT approaches can miss important non-perturbative contributions
- ◆ NDA is not precise enough when confronting experimental results and might not work for certain situations: there are uncontrolled theoretical errors

Models for Composite Dark Matter

- ★ Pion-like (dark quark-antiquark)
 - ◆ pNGB DM [Hietanen et al.,1308.4130]
 - ◆ Quirky DM [Kribs et al.,0909.2034]
 - ◆ Ectocolor DM [Buckley&Neil,1209.6054]
 - ◆ SIMP [Hochberg et al.,1411.3727]
 - → Minimal SU(2)

- ★ Glueball-like (only gluons)
 - ◆ SUNonia [Boddy et al.,1402.3629] [Soni,1602.00714]

- ★ Baryon-like (multiple quarks)
 - ◆ "Technibaryons" [LSD, 1301.1693]
 - ◆ Stealth DM [LSD, 1503.04203-1503.04205]
 - ◆ One-family TC [LatKMI, 1510.07373]
 - ◆ Sextet CH [LatHC, 1601.03302]

Models for Composite Dark Matter

- ★ Pion-like (dark quark-antiquark)
 - ◆ pNGB DM [Hietanen et al.,1308.4130]
 - ◆ Quirky DM [Kribs et al.,0909.2034]
 - ◆ Ectocolor DM [Buckley&Neil,1209.6054]
 - ◆ SIMP [Hochberg et al.,1411.3727]
 - → Minimal SU(2)

- ★ Glueball-like (only gluons)
 - ◆ SUNonia [Boddy et al.,1402.3629] [Soni,1602.00714]

- ★ Baryon-like (multiple quarks)
 - "Technibaryons" [LSD, 1301.1693]
 - ◆ Stealth DM [LSD, 1503.04203-1503.04205]
 - ◆ One-family TC [LatKMI, 1510.07373]
 - ◆ Sextet CH [LatHC, 1601.03302]

- New strongly-coupled SU(4) gauge sector "like" QCD with a plethora of composite states in the spectrum: all mass scales are technically natural for hadrons
- New Dark fermions: have dark color and also have electroweak charges (W/Z,γ)
- Dark fermions have electroweak breaking <u>masses</u> (Higgs) and electroweak preserving <u>masses</u> (not-Higgs)
- ◆ A global symmetry naturally stabilizes the dark lightest baryonic composite states (e.g. dark neutron)

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when *u* ↔ *d*

Field	$SU(N)_D$	$\left (\mathrm{SU}(2)_L, Y) \right $	Q
$F_1 = \begin{pmatrix} F_1^u \\ F_1^d \end{pmatrix}$	N	(2,0)	
$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix}$	$\overline{\mathbf{N}}$	(2,0)	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$
F_3^u	${f N}$	(1,+1/2)	+1/2
F_3^d	\mathbf{N}	(1,-1/2)	-1/2
F_4^u	$\overline{\mathbf{N}}$	(1,+1/2)	+1/2
F_4^d	$\overline{\mathbf{N}}$	(1,-1/2)	-1/2
	1	'	'

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when *u* ↔ *d*

	Field	$SU(N)_D$	$\left (\mathrm{SU}(2)_L, Y) \right $	Q
-	$F_1 = \begin{pmatrix} F_1^u \\ F_1^d \end{pmatrix}$	N	(2,0)	
A	$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix}$	$\overline{\mathbf{N}}$	(2,0)	$ \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix} $
	F_3^u	${f N}$	(1,+1/2)	+1/2
	F_3^d	\mathbf{N}	(1,-1/2)	-1/2
	F_4^u	$\overline{\mathbf{N}}$	(1,+1/2)	+1/2
	F_4^d	$\overline{\mathbf{N}}$	(1,-1/2)	-1/2

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when *u* ↔ *d*

	Field	$SU(N)_D$	$(SU(2)_L, Y)$	Q
	$F_1 = \begin{pmatrix} F_1^u \\ F_1^d \end{pmatrix}$	N	(2,0)	
A	$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix}$	$\overline{\mathbf{N}}$	(2,0)	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$
	F_3^u	N	(1, +1/2)	+1/2
	F_3^d	N	(1, -1/2)	-1/2
	F_4^u	$\overline{\mathbf{N}}$	(1, +1/2)	+1/2
	F_4^d	$\overline{\mathbf{N}}$	(1,-1/2)	-1/2

$$\mathcal{L} \supset -\frac{1}{2} y_{14}^u i_j F_1^i H^j F_4^d + y_{14}^d F_1 \cdot H^{\dagger} F_4^u - y_{23}^d \epsilon_{ij} F_2^i H^j F_3^d - y_{23}^u F_2 \cdot H^{\dagger} F_3^u + h.c.$$

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when *u* ↔ *d*

Field	$SU(N)_D$	$(SU(2)_L, Y)$	Q
$F_1 = \begin{pmatrix} F_1^u \\ F_1^d \end{pmatrix}$	N	(2,0)	
$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix}$	$\overline{\mathbf{N}}$	(2,0)	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$
F_3^u	${f N}$	(1,+1/2)	+1/2
F_3^d	\mathbf{N}	(1, -1/2)	-1/2
F_4^u	$\overline{\mathbf{N}}$	(1, +1/2)	+1/2
F_4^d	$\overline{\mathbf{N}}$	(1,-1/2)	-1/2

$$\mathcal{L} \supset + y_{14}^{u} _{ij} F_{1}^{i} H^{j} F_{4}^{d} + y_{14}^{d} F_{1} \cdot H^{\dagger} F_{4}^{u} - y_{23}^{d} \epsilon_{ij} F_{2}^{i} H^{j} F_{3}^{d} - y_{23}^{u} F_{2} \cdot H^{\dagger} F_{3}^{u} + h.c.$$

$$\mathcal{L} \supset M_{12} \epsilon_{ij} F_1^i F_2^j - M_{34}^u F_3^u F_4^d + M_{34}^d F_3^d F_4^u + h.c.$$

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when *u* ↔ *d*

Field
$$SU(N)_D$$
 $(SU(2)_L, Y)$ Q

$$F_1 = \begin{pmatrix} F_1^u \\ F_1^d \end{pmatrix} \quad \mathbf{N} \qquad (\mathbf{2}, 0) \qquad \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$$

$$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix} \quad \overline{\mathbf{N}} \qquad (\mathbf{2}, 0) \qquad \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$$

$$F_3^u \quad \mathbf{N} \qquad (\mathbf{1}, +1/2) \qquad +1/2$$

$$F_3^d \quad \mathbf{N} \qquad (\mathbf{1}, -1/2) \qquad -1/2$$

$$F_4^u \qquad \overline{\mathbf{N}} \qquad (\mathbf{1}, +1/2) \qquad +1/2$$

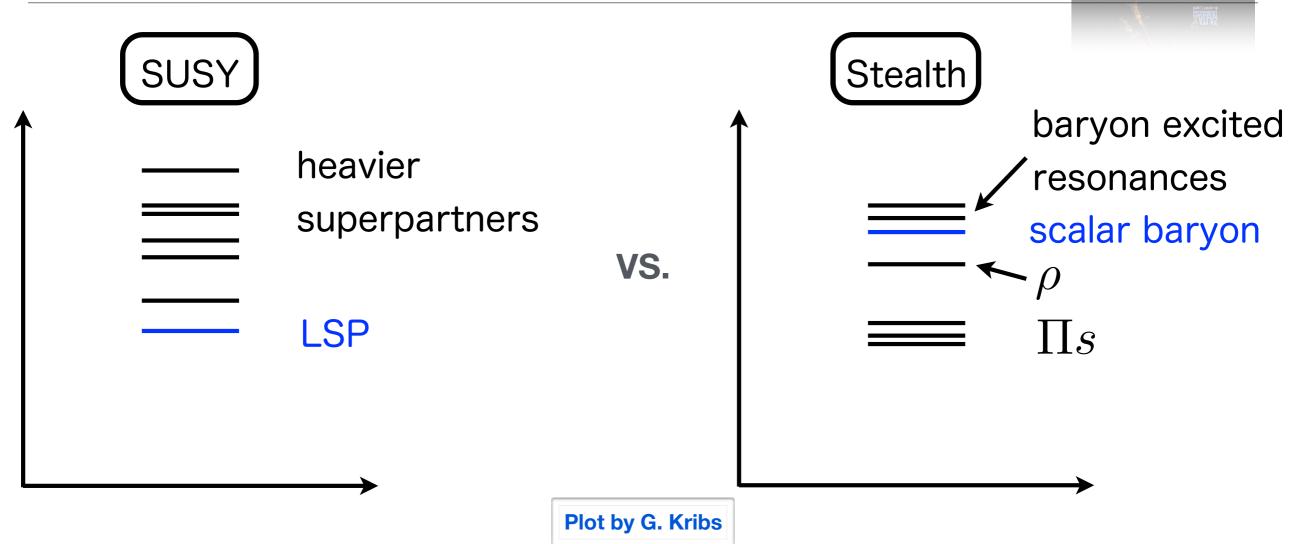
$$F_4^d \qquad \overline{\mathbf{N}} \qquad (\mathbf{1}, -1/2) \qquad -1/2$$

$$\mathcal{L} \supset -\frac{y_{14}^u}{ij} F_1^i H^j F_4^d + y_{14}^d F_1 \cdot H^{\dagger} F_4^u - y_{23}^d \epsilon_{ij} F_2^i H^j F_3^d - y_{23}^u F_2 \cdot H^{\dagger} F_3^u + h.c.$$

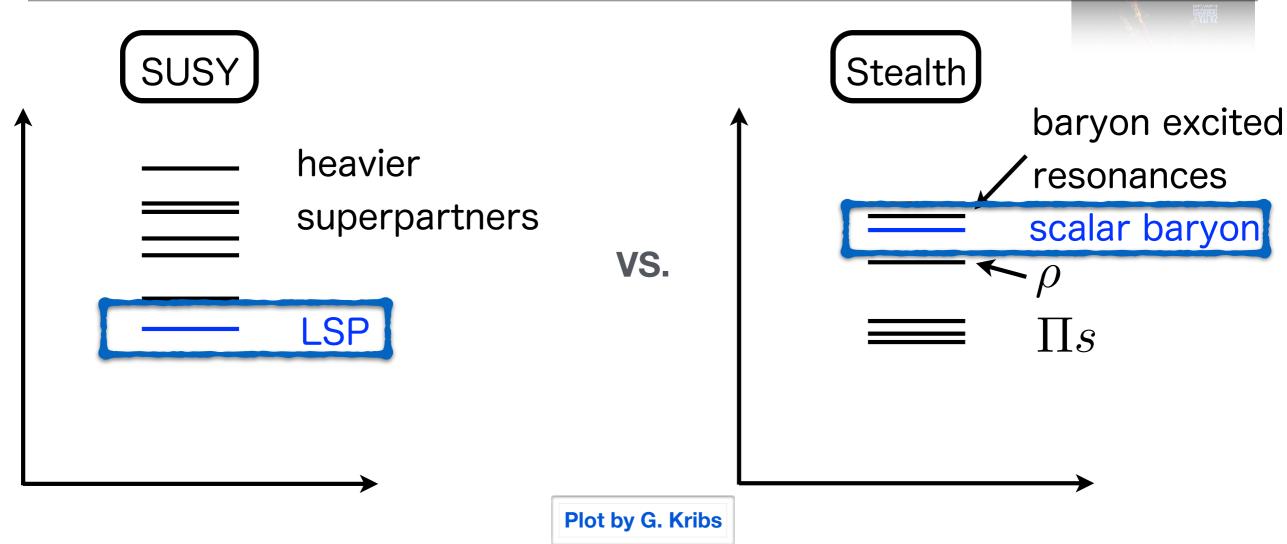
$$\mathcal{L} \supset M_{12} I_{ij} F_1^i F_2^j - M_{34}^u F_3^u F_4^d + M_{34}^d F_3^d F_4^u + h.c.$$

$$y_{14}^{\mathbf{u}} = y_{14}^{\mathbf{d}}$$
 $y_{23}^{\mathbf{u}} = y_{23}^{\mathbf{d}}$ $M_{34}^{\mathbf{u}} = M_{34}^{\mathbf{d}}$

Stealth DM at colliders

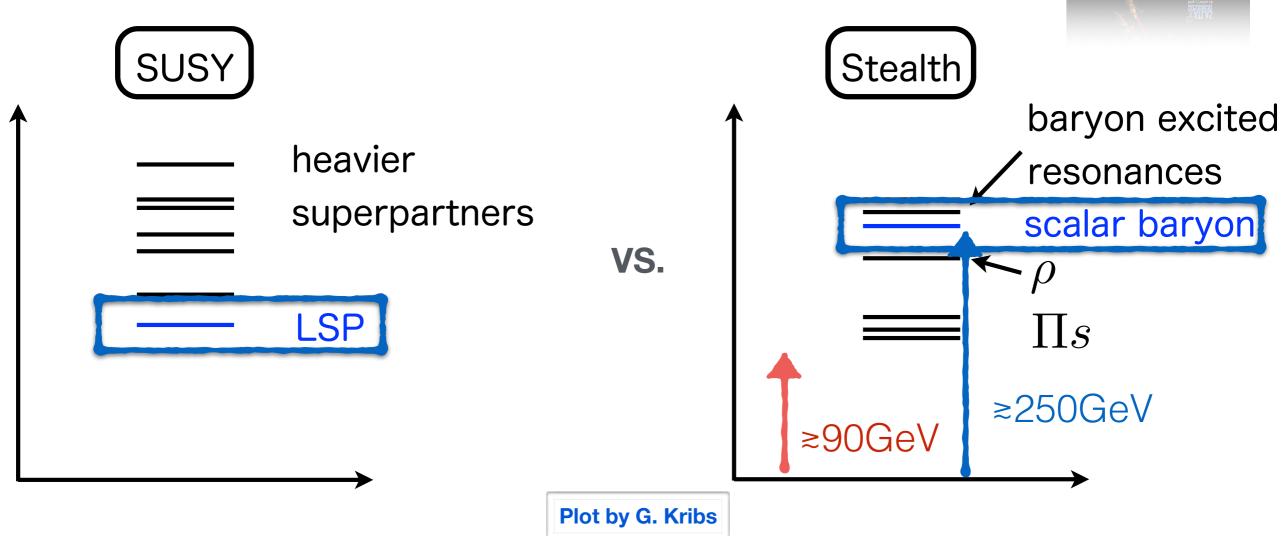


Stealth DM at colliders



◆ Signatures are not dominated by missing energy: DM is not the lightest particle! The interactions are suppressed (form factors)

Stealth DM at colliders



- Signatures are not dominated by missing energy: DM is not the lightest particle! The interactions are suppressed (form factors)
- Dark mesons production and decay give interesting signatures: the model can be constrained by collider limits!

Photon interactions

$$\langle \chi(p')|j_{\rm EM}^{\mu}|\chi(p)\rangle = F(q^2)q^{\mu}$$

Expansion at low momentum through effective operators

→ dimension 5 → magnetic dipole

→ dimension 6 → charge radius

→ dimension 7 → polarizability

$$\frac{(\bar{\chi}\sigma^{\mu\nu}\chi)F_{\mu\nu}}{\Lambda_{\rm dark}}$$

$$\frac{(\bar{\chi}\chi)v_{\mu}\partial_{\nu}F^{\mu\nu}}{\Lambda_{\rm dark}^2}$$

$$\frac{(\bar{\chi}\chi)F_{\mu\nu}F^{\mu\nu}}{\Lambda_{\rm dark}^3}$$

Photon interactions

$$\langle \chi(p')|j_{\rm EM}^{\mu}|\chi(p)\rangle = F(q^2)q^{\mu}$$

Expansion at low momentum through effective operators

- → dimension 6 → charge radius

→ dimension 7 → polarizability

$$\frac{(\bar{\chi}\sigma^{\mu\nu}\chi)F_{\mu\nu}}{\Lambda_{\rm dark}}$$

$$\frac{(\bar{\chi}\chi)v_{\mu}\partial_{\nu}F^{\mu\nu}}{\Lambda_{\rm dark}^2}$$

$$\frac{(\bar{\chi}\chi)F_{\mu\nu}F^{\mu\nu}}{\Lambda_{\rm dark}^3}$$

Photon interactions

$$\langle \chi(p')|j_{\rm EM}^{\mu}|\chi(p)\rangle = F(q^2)q^{\mu}$$

Expansion at low momentum through effective operators

 $\frac{(\bar{\chi}\sigma^{\mu\nu}\chi)F_{\mu\nu}}{\Lambda_{\rm dark}}$

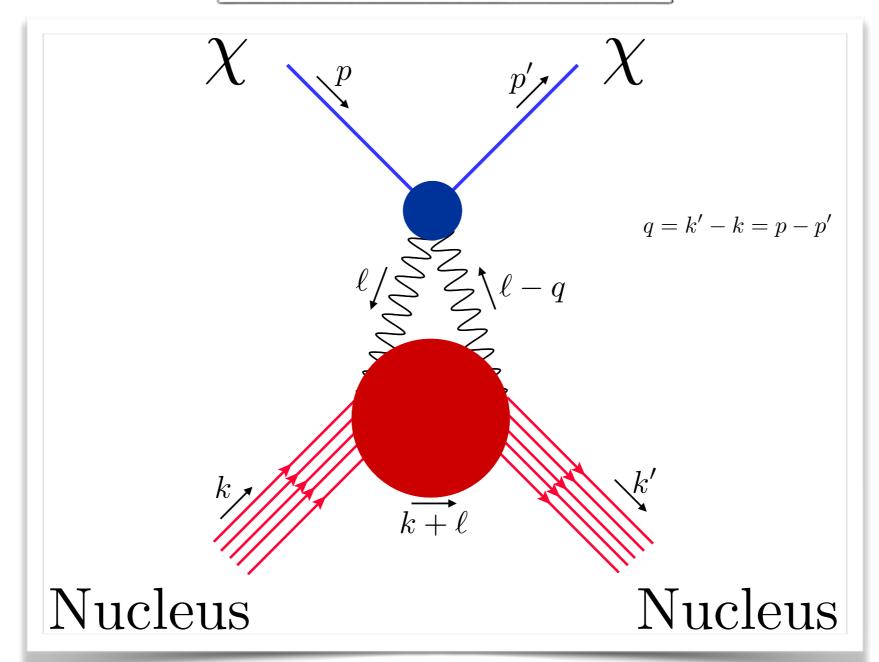
 $\frac{(\bar{\chi}\chi)v_{\mu}\partial_{\nu}F^{\mu\nu}}{\Lambda_{\rm dark}^2}$

→ dimension 7 → polarizability

 $\frac{(\bar{\chi}\chi)F_{\mu\nu}F^{\mu\nu}}{\Lambda_{\rm dark}^3}$

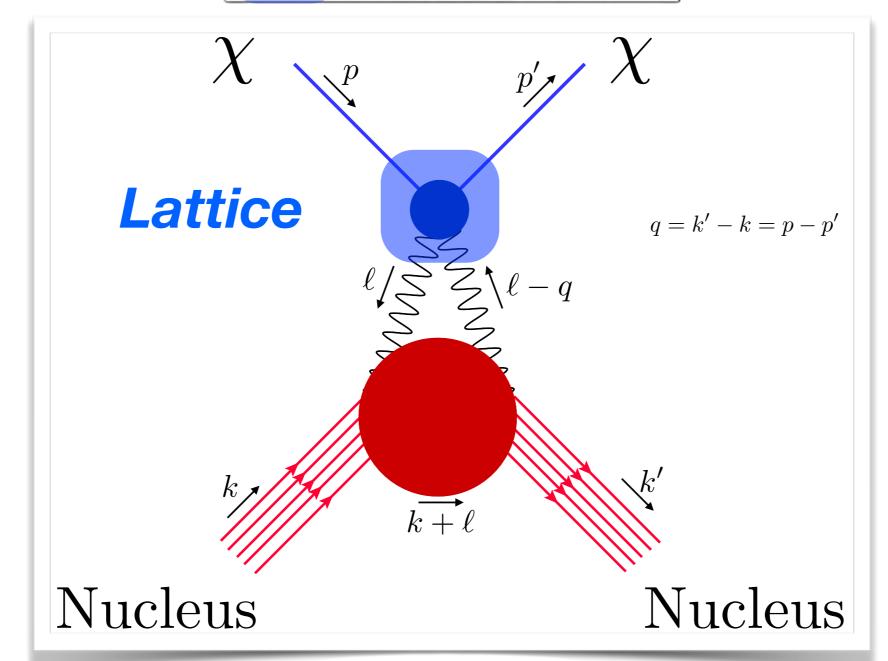
Computing polarizability

$$\frac{c_F e^2}{m_\chi^3} \, \chi^{\star} \chi F^{\mu\alpha} F^{\nu}_{\alpha} v_{\mu} v_{\nu}$$

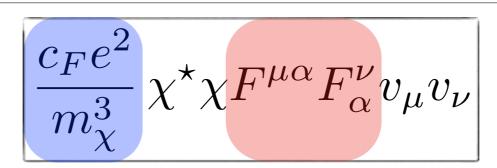


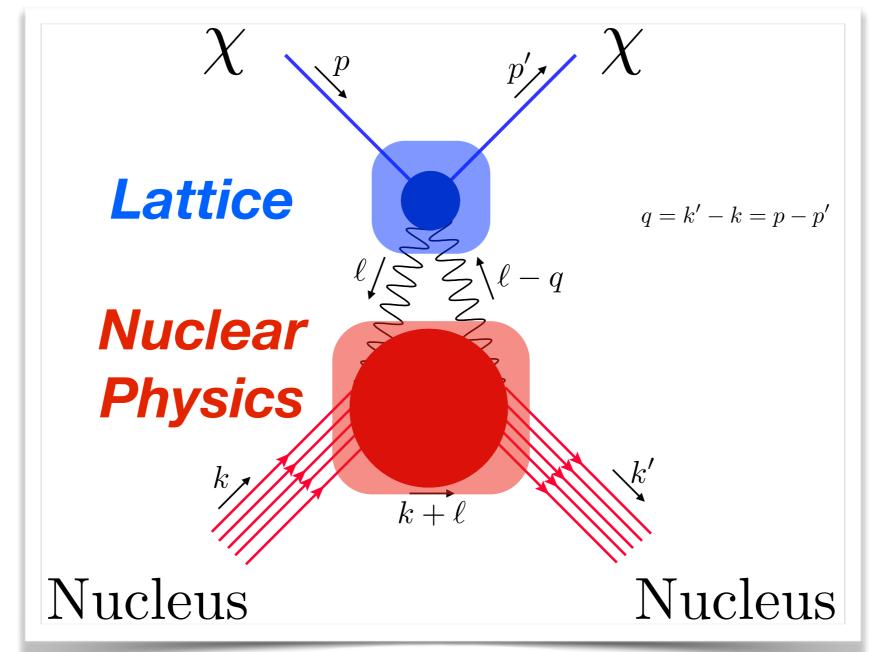
Computing polarizability

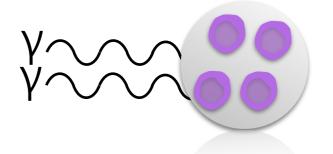
$$\frac{c_F e^2}{m_\chi^3} \chi^* \chi F^{\mu\alpha} F^\nu_\alpha v_\mu v_\nu$$



Computing polarizability

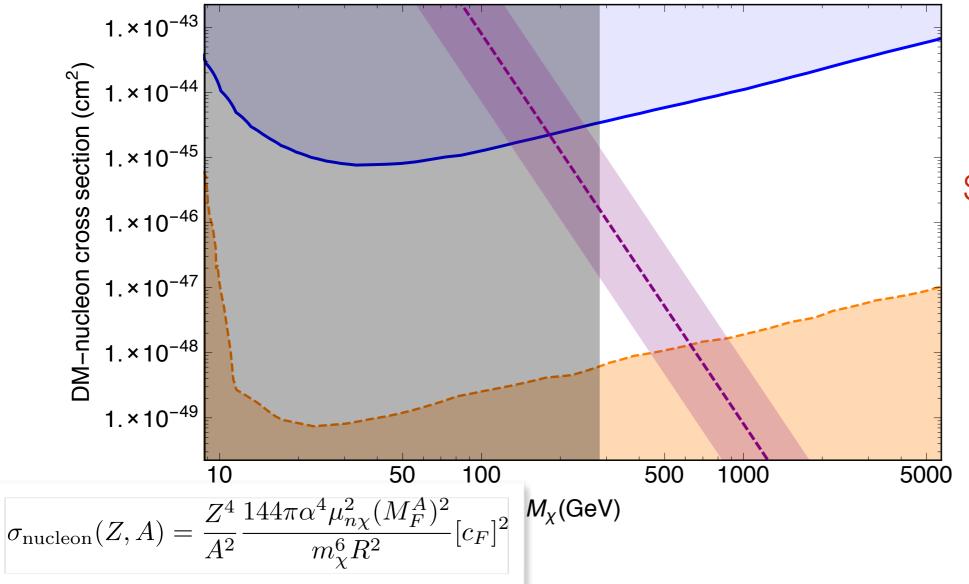






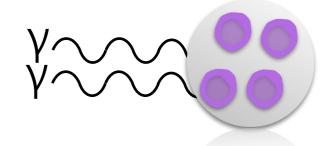
Lowest bound from EM polarizability

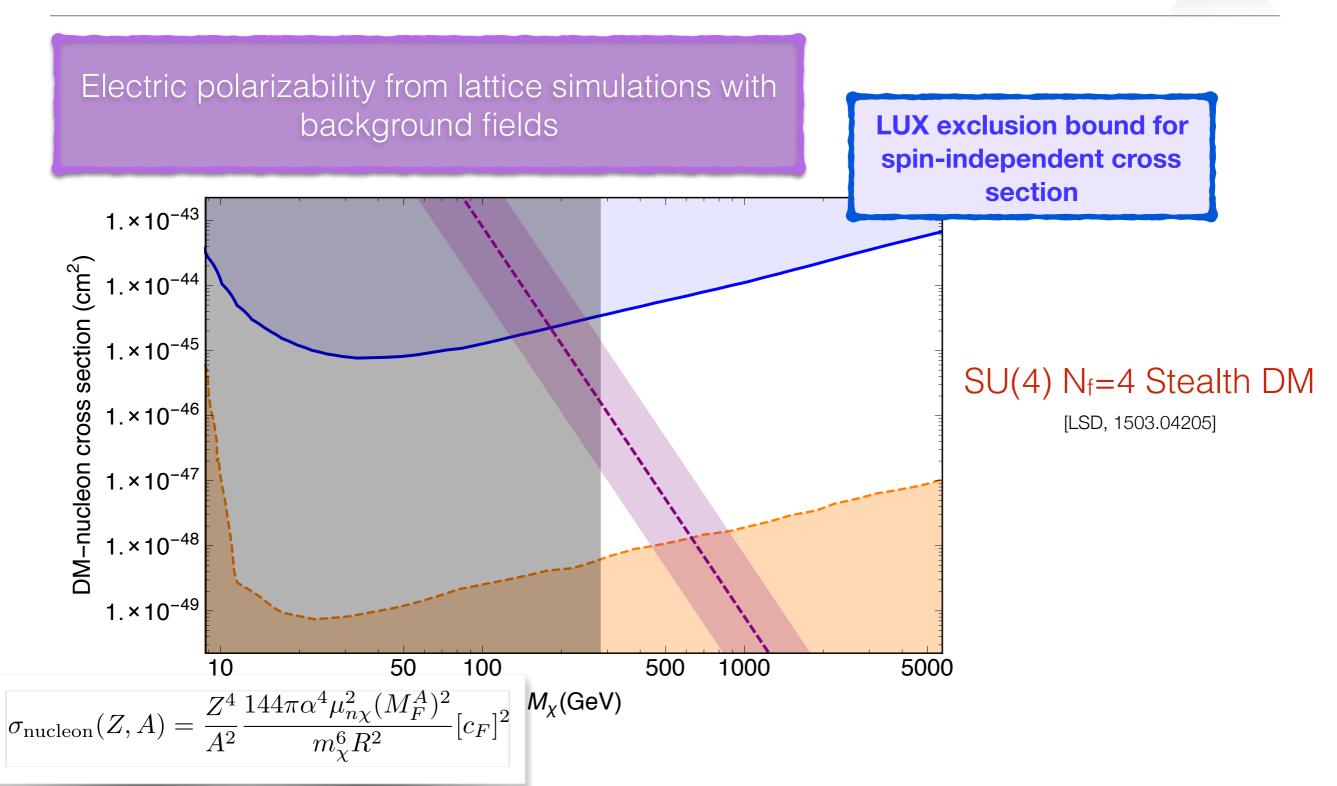
Electric polarizability from lattice simulations with background fields



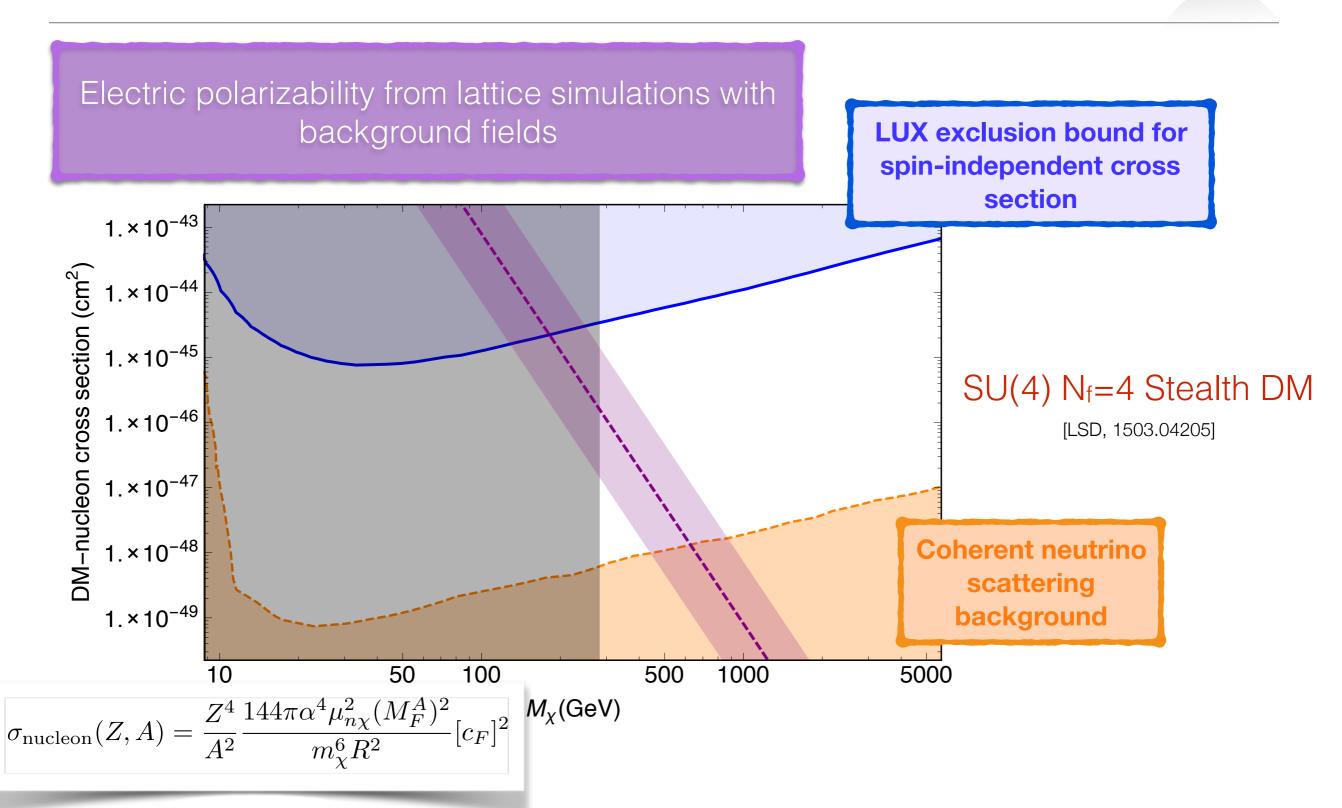
SU(4) N_f=4 Stealth DM

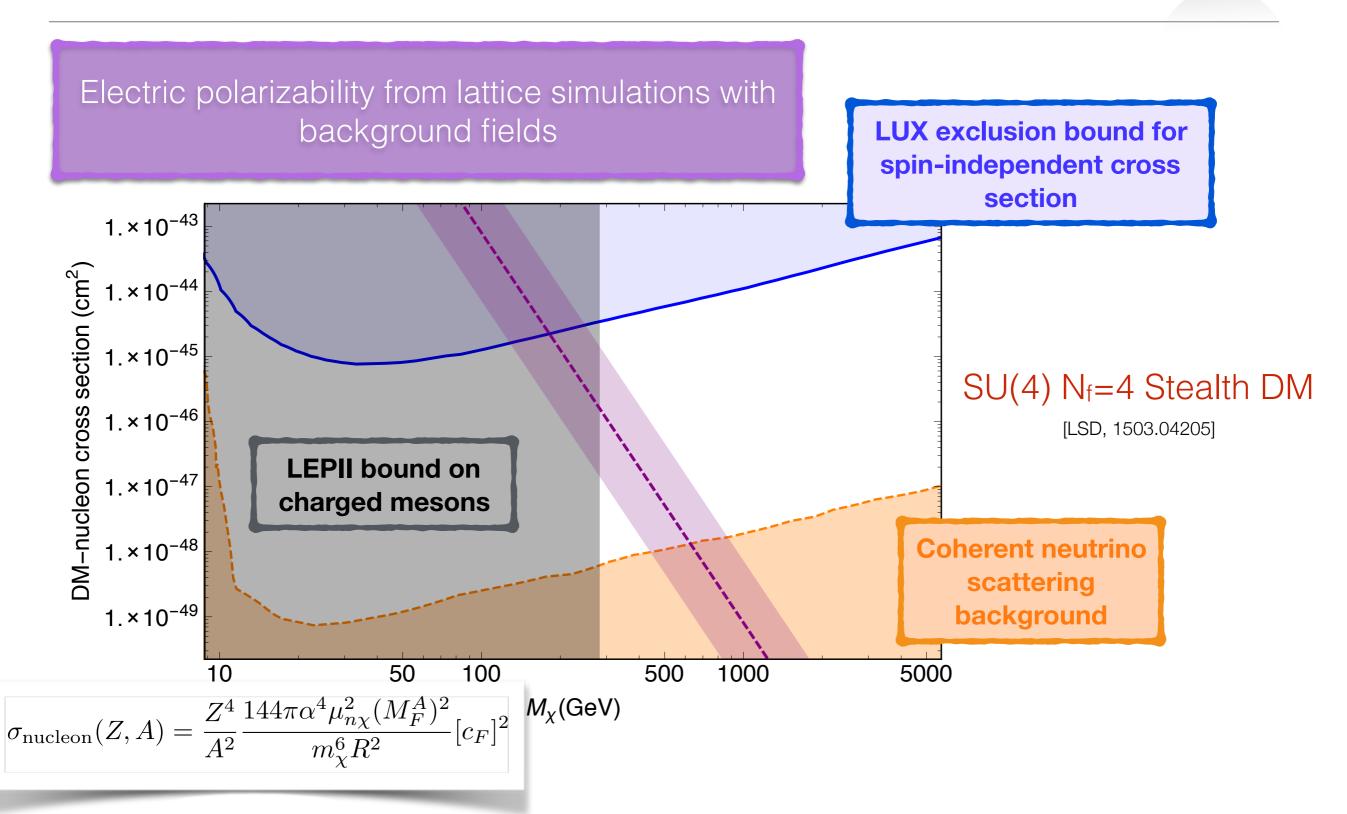
[LSD, 1503.04205]



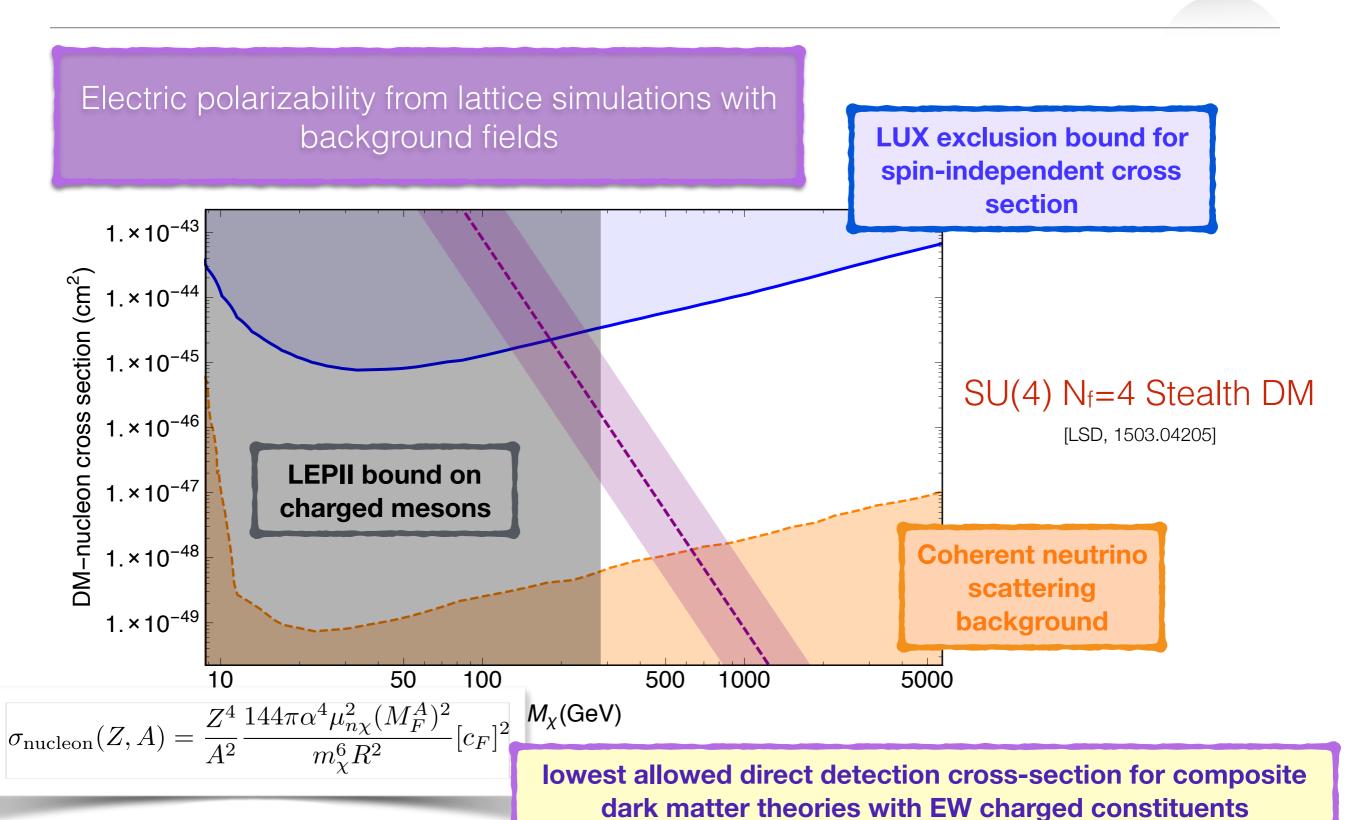


Y





Y



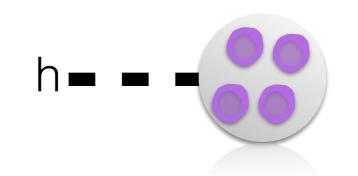
Concluding remarks

- ★QCD ideas and lattice QCD techniques can be borrowed when exploring the DM landscape (BSM)
- ★Composite dark matter is a viable interesting possibility with rich phenomenology
- ★Lattice methods can help in calculating direct detection cross sections, production rates at colliders, and selfinteraction cross sections of phenomenological relevance.
- ★Dark matter constituents can carry electroweak charges and still the stable composites are currently undetectable. Stealth cross section.

extra

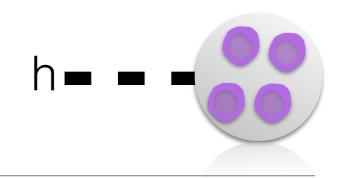
[LSD, 1402.6656-1503.04203] [LatKMI, 1510.07373] [DeGrand et al., 1501.05665]

Computing Higgs exchange



 Need to non-perturbatively evaluate the dark σ-term

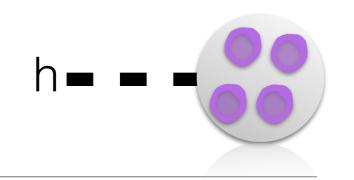
$$\mathcal{M}_a = \frac{y_f y_q}{2m_h^2} \sum_f \langle B|\bar{f}f|B\rangle \sum_q \langle a|\bar{q}q|a\rangle$$



 Need to non-perturbatively evaluate the dark σ-term

$$\mathcal{M}_a = \frac{y_f y_q}{2m_h^2} \sum_{f} \langle B|\bar{f}f|B\rangle \sum_{q} \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- 2. dark baryon scalar form factor: need lattice input for generic DM models!
- 3. nucleon scalar form factor: ChPT and lattice input



- Need to non-perturbatively evaluate the dark σ-term
- ◆ Effective Higgs coupling nontrivial with mixed chiral and vector-like masses

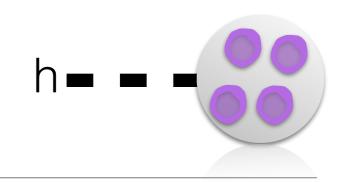
$$\mathcal{M}_a = \frac{y_f y_q}{2m_h^2} \sum_f \langle B|\bar{f}f|B\rangle \sum_q \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- dark baryon scalar form factor: need lattice input for generic DM models!
- nucleon scalar form factor: ChPT and lattice input

$$y_f |B|\bar{f}f|B\rangle = \left. \frac{m_B}{v} \sum_f \frac{v}{m_f} \left. \frac{\partial m_f(h)}{\partial h} \right|_{h=v} f_f^{(B)}$$

$$m_f(h) = m + \frac{y_f h}{\sqrt{2}}$$

$$\alpha \equiv \left. \frac{v}{m_f} \frac{\partial m_f(h)}{\partial h} \right|_{h=v} = \frac{yv}{\sqrt{2}m + yv}$$



- Need to non-perturbatively evaluate the dark σ-term
- ◆ Effective Higgs coupling nontrivial with mixed chiral and vector-like masses
- Model-dependent answer for the cross-section

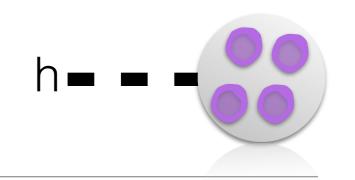
$$\mathcal{M}_a = \frac{y_f y_q}{2m_h^2} \sum_{f} \langle B|\bar{f}f|B\rangle \sum_{q} \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- dark baryon scalar form factor: need lattice input for generic DM models!
- nucleon scalar form factor: ChPT and lattice input

$$y_f |B|\bar{f}f|B\rangle = \frac{m_B}{v} \sum_f \left(\frac{v}{m_f} \left.\frac{\partial m_f(h)}{\partial h}\right|_{h=v} f_f^{(B)}\right)$$

$$m_f(h) = m + \frac{y_f h}{\sqrt{2}}$$

$$\alpha \equiv \left. \frac{v}{m_f} \frac{\partial m_f(h)}{\partial h} \right|_{h=v} = \frac{yv}{\sqrt{2}m + yv}$$



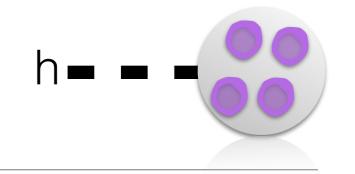
- Need to non-perturbatively evaluate the dark σ-term
- ◆ Effective Higgs coupling nontrivial with mixed chiral and vector-like masses
- Model-dependent answer for the cross-section
- ◆ Lattice input is necessary: compute mass and form factor

$$\mathcal{M}_a = \underbrace{\frac{y_f y_q}{2m_h^2}}_f \sum_f \langle B|\bar{f}f|B\rangle \sum_q \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- dark baryon scalar form factor: need lattice input for generic DM models!
- nucleon scalar form factor: ChPT and lattice input

$$egin{aligned} \left(y_f \left| B \middle| ar{f} f \middle| B \right) = \left| \frac{m_B}{v} \right| \sum_f \left| \frac{v}{m_f} \left| \frac{\partial m_f(h)}{\partial h} \right|_{h=v} \right| f_f^{(B)} \\ m_f(h) = m + \frac{y_f h}{\sqrt{2}} \end{aligned}$$

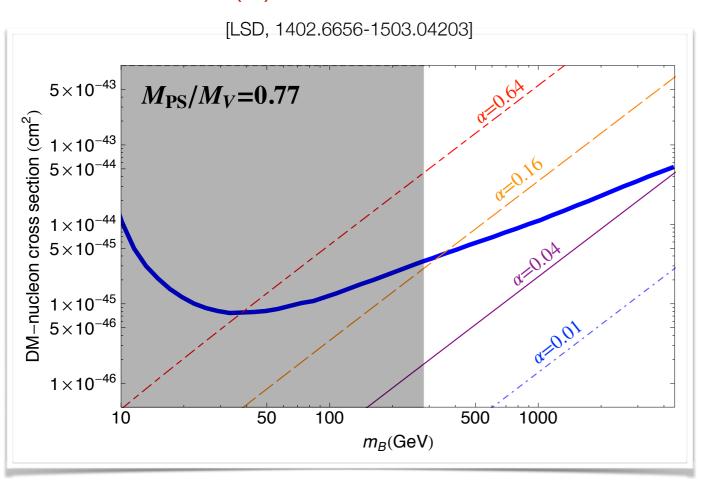
$$\Omega \equiv \left. \frac{v}{m_f} \frac{\partial m_f(h)}{\partial h} \right|_{h=v} = \frac{yv}{\sqrt{2}m + yv}$$



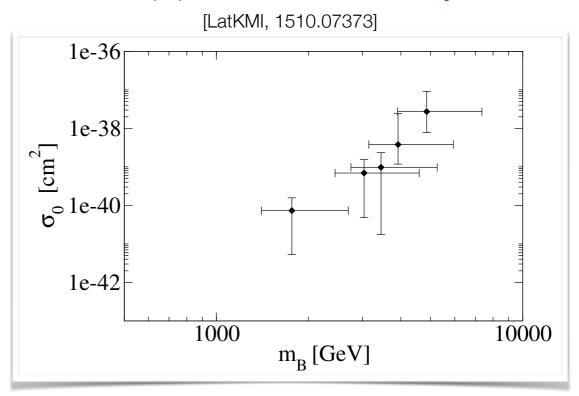
Bounds from Higgs exchange

- ◆Lattice results for the cross-section are compared to experimental bounds
- ◆Coupling space in specific models can be vastly constrained

SU(4) N_f=4 Stealth DM

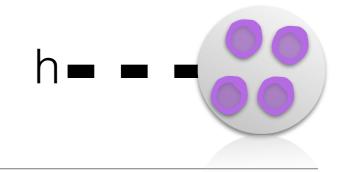


SU(3) N_f=8 "technibaryon"



- ◆Some candidates can be excluded as *dominant sources of dark matter
- ◆There is lattice evidence for universality of dark scalar form factors

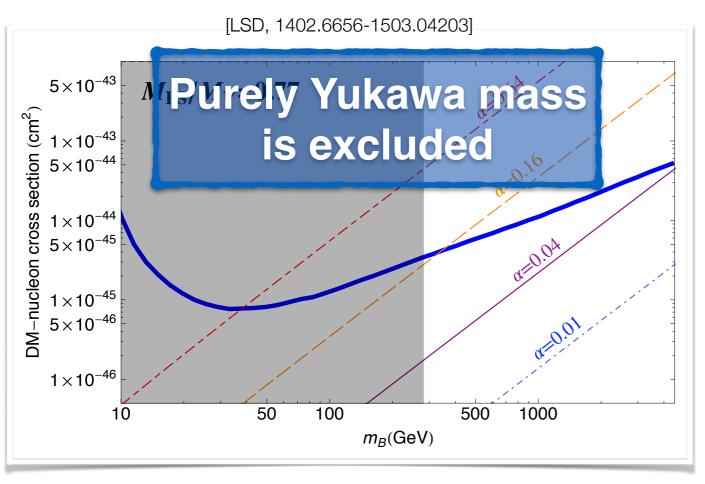
[DeGrand et al., 1501.05665]



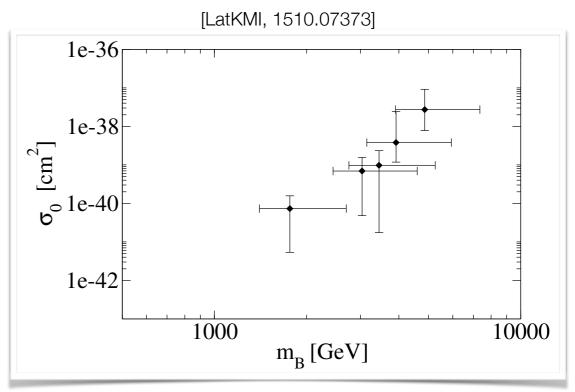
Bounds from Higgs exchange

- ◆Lattice results for the cross-section are compared to experimental bounds
- ◆Coupling space in specific models can be vastly constrained

SU(4) N_f=4 Stealth DM

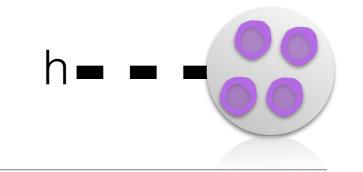


SU(3) N_f=8 "technibaryon"



- ◆Some candidates can be excluded as *dominant sources of dark matter
- ◆There is lattice evidence for universality of dark scalar form factors

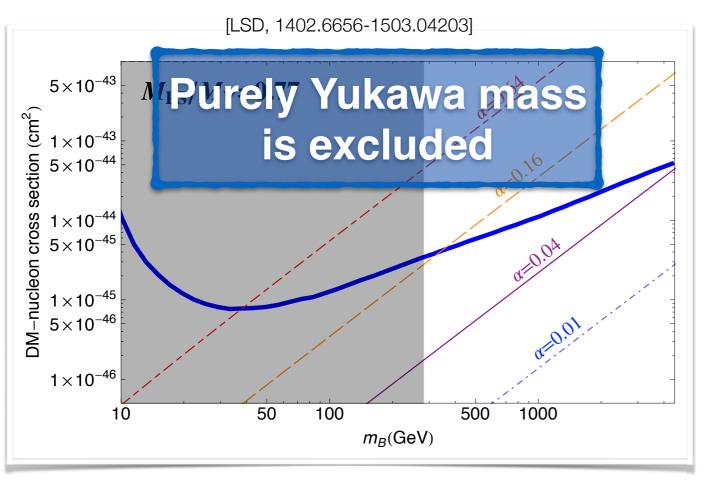
[DeGrand et al., 1501.05665]

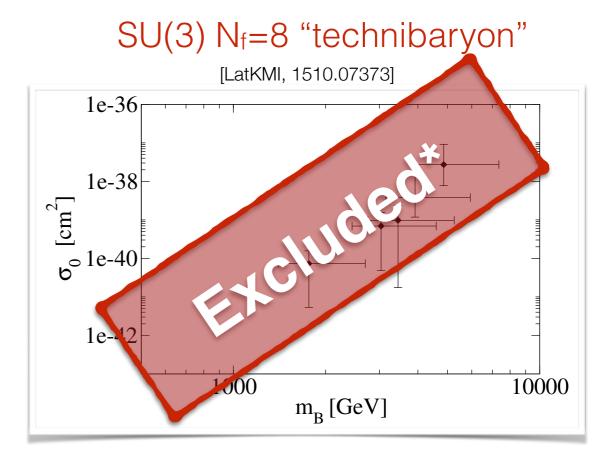


Bounds from Higgs exchange

- ◆Lattice results for the cross-section are compared to experimental bounds
- ◆Coupling space in specific models can be vastly constrained

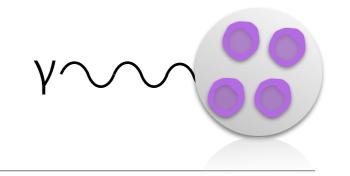
SU(4) N_f=4 Stealth DM





- ◆Some candidates can be excluded as *dominant sources of dark matter
- ◆There is lattice evidence for universality of dark scalar form factors

[DeGrand et al., 1501.05665]

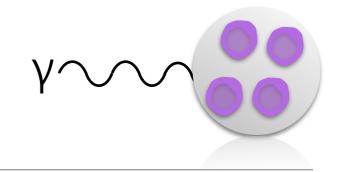


Mesonic and Baryonic EM form factors directly from lattice simulations

SU(3) N_f=2,6 dark fermionic baryon

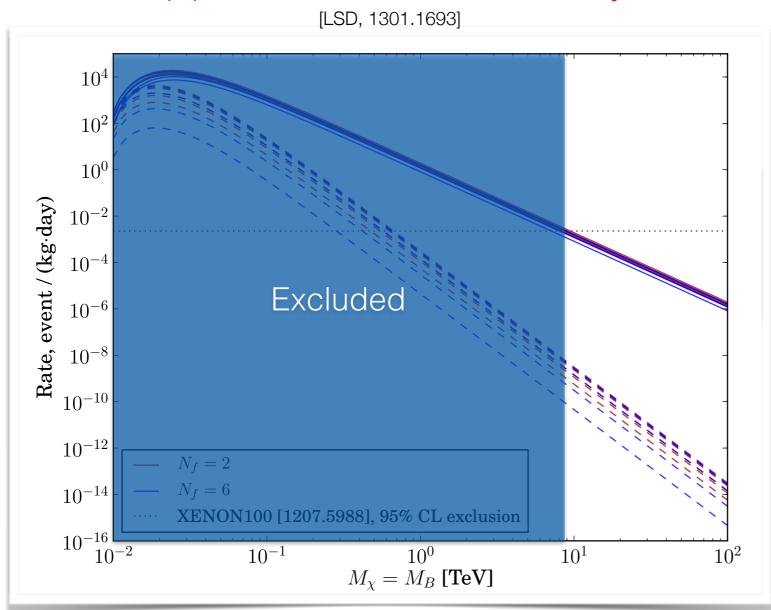


- ★ baryon similar to QCD neutron
- ★ dark quarks with Q=Y
- ★ calculate connected 3pt
- ★ scale set by DM mass
- ★ magnetic moment dominates
- ★ results independent of N_f



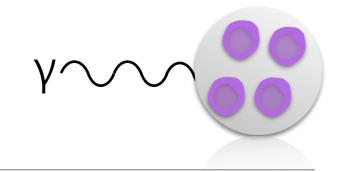
Mesonic and Baryonic EM form factors directly from lattice simulations

SU(3) N_f=2,6 dark fermionic baryon



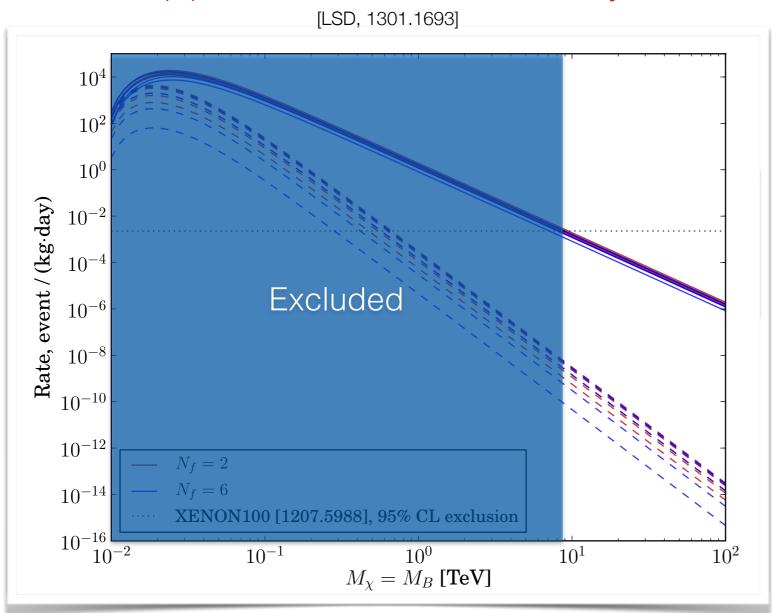
- ★ baryon similar to QCD neutron
- ★ dark quarks with Q=Y
- ★ calculate connected 3pt
- ★ scale set by DM mass
- ★ magnetic moment dominates
- ★ results independent of N_f

 $M_B > \sim 10 \text{ TeV}$



Mesonic and Baryonic EM form factors directly from lattice simulations

SU(3) N_f=2,6 dark fermionic baryon

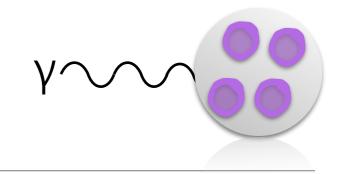


- ★ baryon similar to QCD neutron
- ★ dark quarks with Q=Y
- ★ calculate connected 3pt
- ★ scale set by DM mass
- ★ magnetic moment dominates
- ★ results independent of N_f

M_B >~ 10 TeV

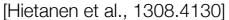
pushed to ~100 TeV

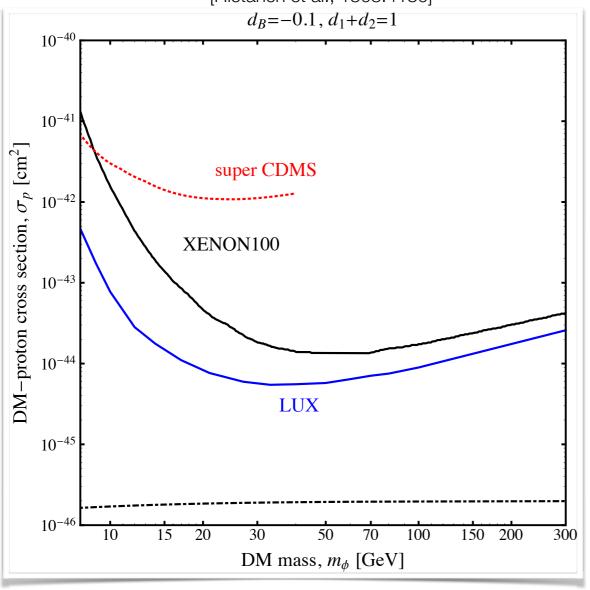
with new LUX



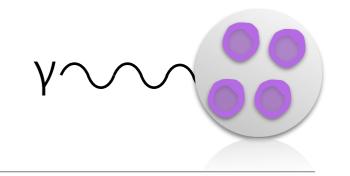
Mesonic and Baryonic EM form factors directly from lattice simulations

$SU(2) N_f=2 pNGB DM$



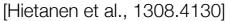


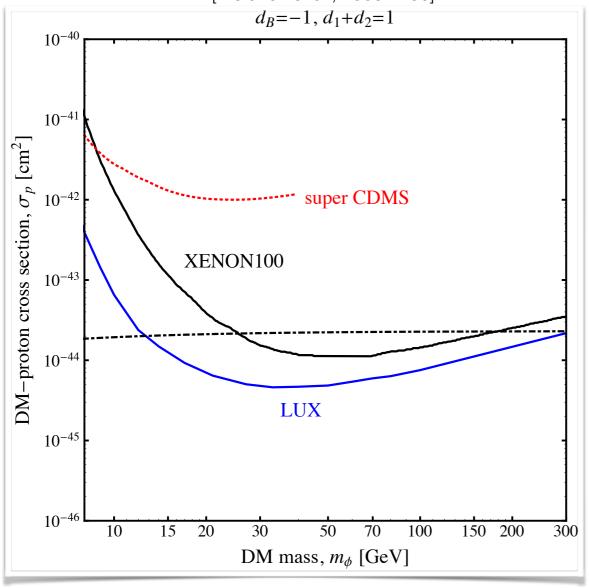
- ★ dm is "mesonic" pNGB
- ★ calculate connected 3pt
- ★ use VMD with lattice p mass
- ★ scale set by F_{π} =256 GeV
- ★ depends on isospin breaking d_B
- \star also couples to Higgs (d₁+d₂)



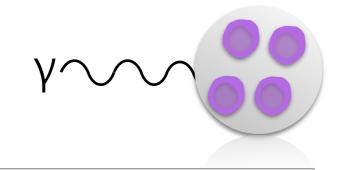
Mesonic and Baryonic EM form factors directly from lattice simulations

$SU(2) N_f=2 pNGB DM$



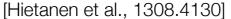


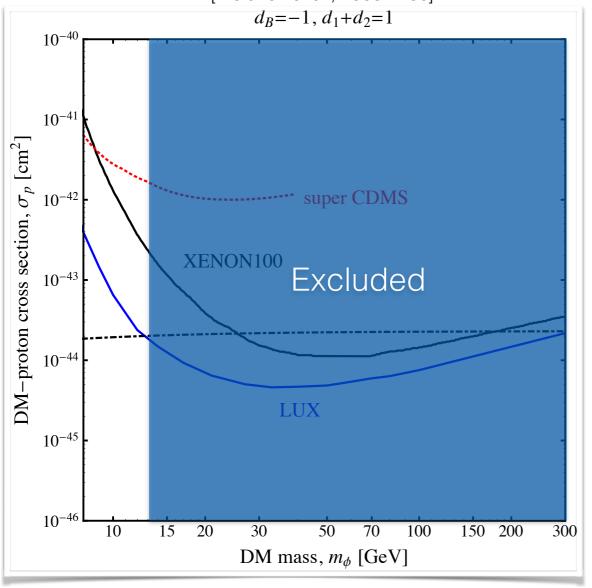
- ★ dm is "mesonic" pNGB
- ★ calculate connected 3pt
- ★ use VMD with lattice p mass
- ★ scale set by F_{π} =256 GeV
- ★ depends on isospin breaking d_B
- ★ also couples to Higgs (d₁+d₂)



Mesonic and Baryonic EM form factors directly from lattice simulations

$SU(2) N_f=2 pNGB DM$

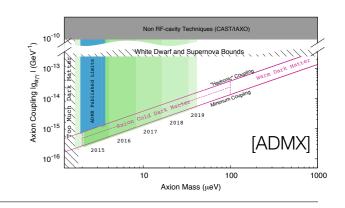




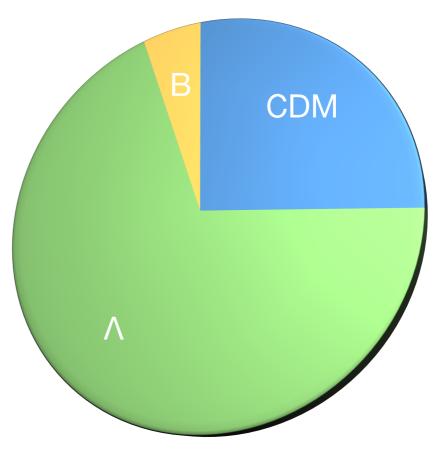
- ★ dm is "mesonic" pNGB
- ★ calculate connected 3pt
- ★ use VMD with lattice p mass
- ★ scale set by F_{π} =256 GeV
- ★ depends on isospin breaking d_B
- \star also couples to Higgs (d₁+d₂)

M_B ~< 13 GeV depends on d_B

Axion dark matter

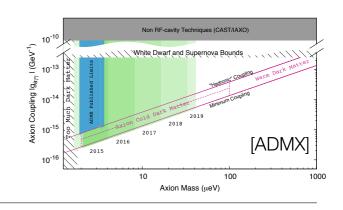


- Axions were originally proposed to deal with the Strong-CP problem
 - They also form a plausible DM candidate
 - The axion energy density requires nonperturbative QCD input
- Being sought in ADMX (LLNL, UW) & CAST-IAXO (CERN) with large discovery potential in the next few years
- Requiring $\Omega_a \leq \Omega_{CDM}$ yields a lower bound on the axion mass today

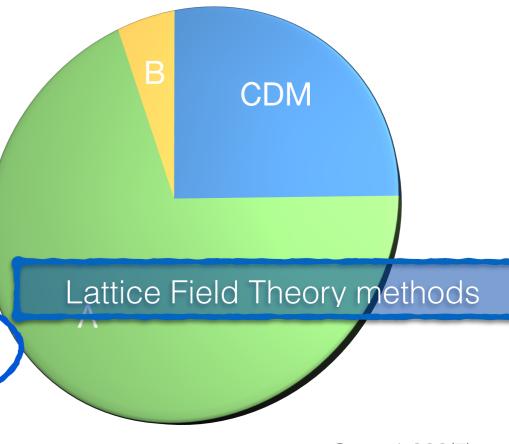


 $\Omega_{\text{tot}} = 1.000(7)$ PDG 2014

Axion dark matter



- Axions were originally proposed to deal with the Strong-CP problem
 - They also form a plausible DM candidate
 - The axion energy density requires nonperturbative QCD input
- Being sought in ADMX (LLNL, UW) & CAST-IAXO (CERN) with large discovery potential in the next few years
- Requiring $\Omega_a \leq \Omega_{\text{CDM}}$ yields a lower bound on the axion mass today



 $\Omega_{\text{tot}} = 1.000(7)$ PDG 2014

$$m_a^2 f_a^2 = \left. \frac{\partial^2 F}{\partial \theta^2} \right|_{\theta=0}$$

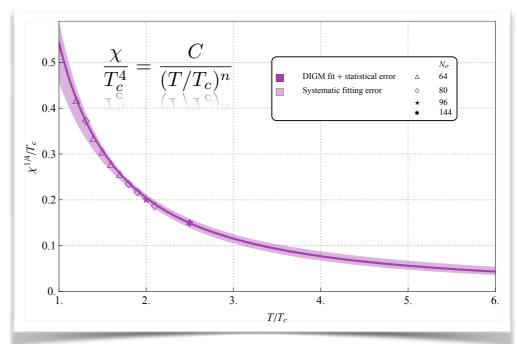
Constraints from lattice simulations

Non-perturbative calculation of QCD topology at finite temperature

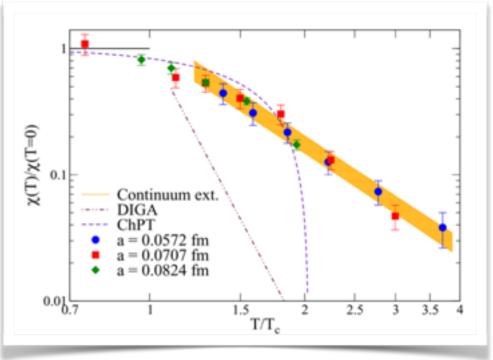
Pure gauge SU(3) topological susceptibility
 compatible with model predictions, but
 large non-perturbative effects

[Kitano&Yamada, 1506.00370][Borsanyi et al., 1508.06917][Frison et al.,1606.07175]

[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]



[Berkowitz, Buchoff, ER., 1505.07455]



[Bonati et al., 1512.06746]

$$m_a^2 f_a^2 = \left. \frac{\partial^2 F}{\partial \theta^2} \right|_{\theta=0}$$

Constraints from lattice simulations

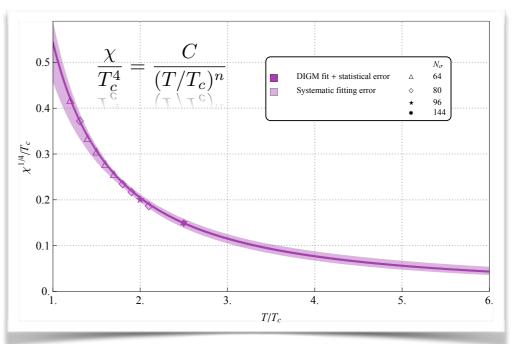
Non-perturbative calculation of QCD topology at finite temperature

Pure gauge SU(3) topological susceptibility
 compatible with model predictions, but
 large non-perturbative effects

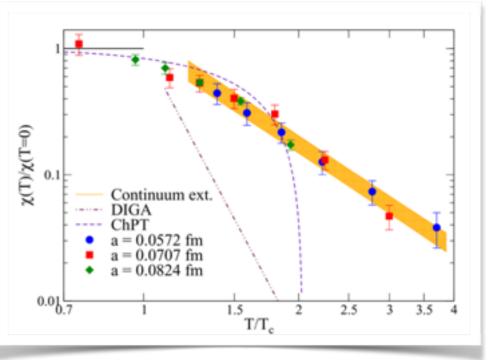
[Kitano&Yamada, 1506.00370][Borsanyi et al., 1508.06917][Frison et al.,1606.07175]

[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]

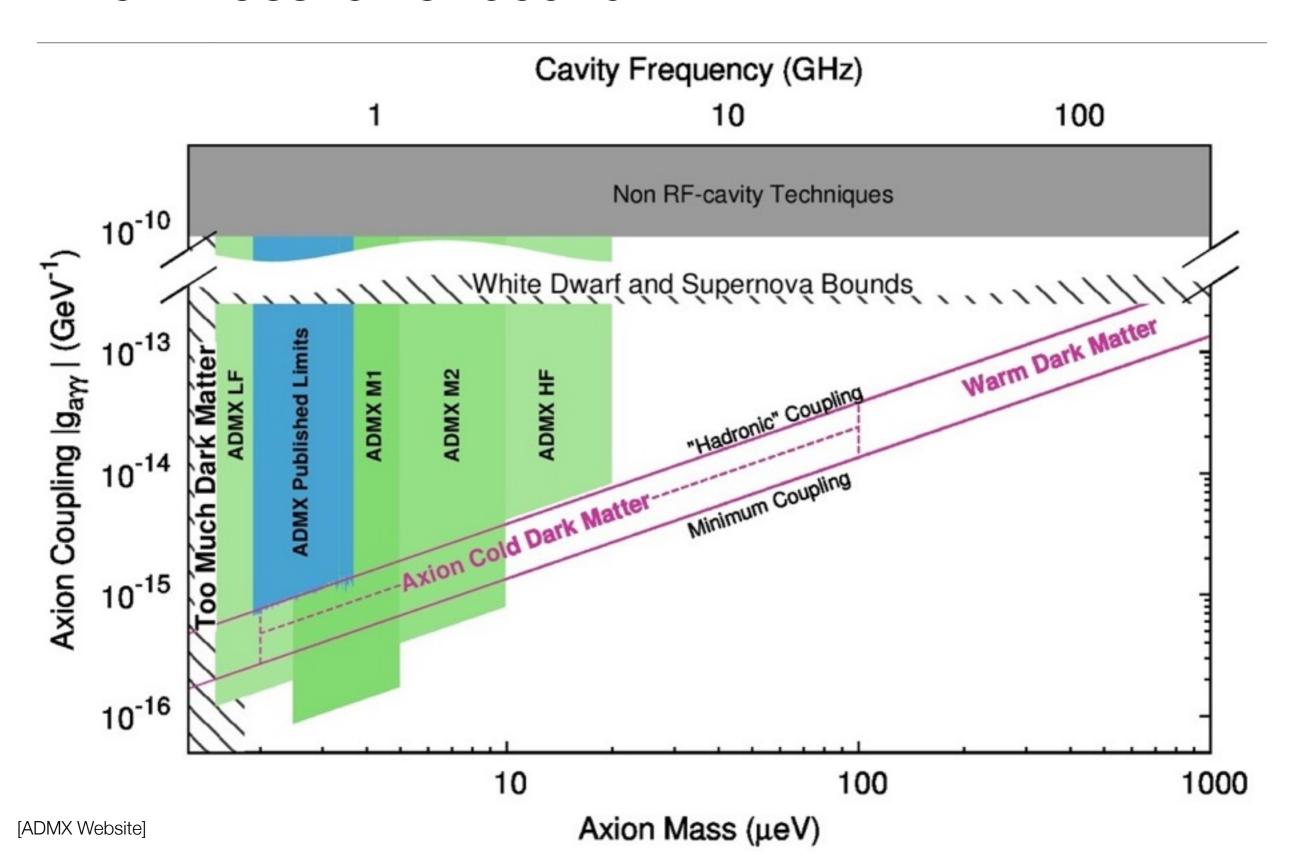
Great effort to control all systematic lattice effects in order to impact experiments. This research has started only 1 year ago!

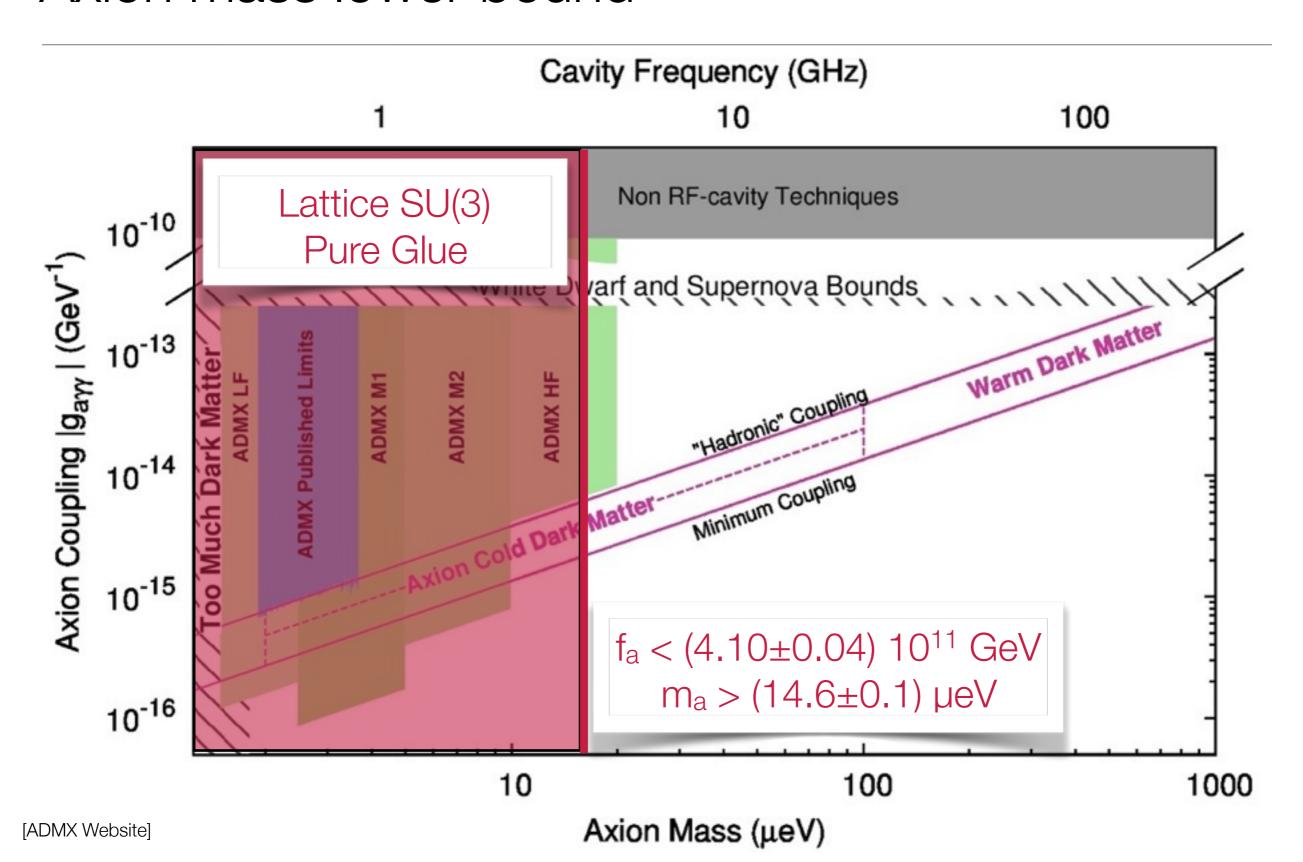


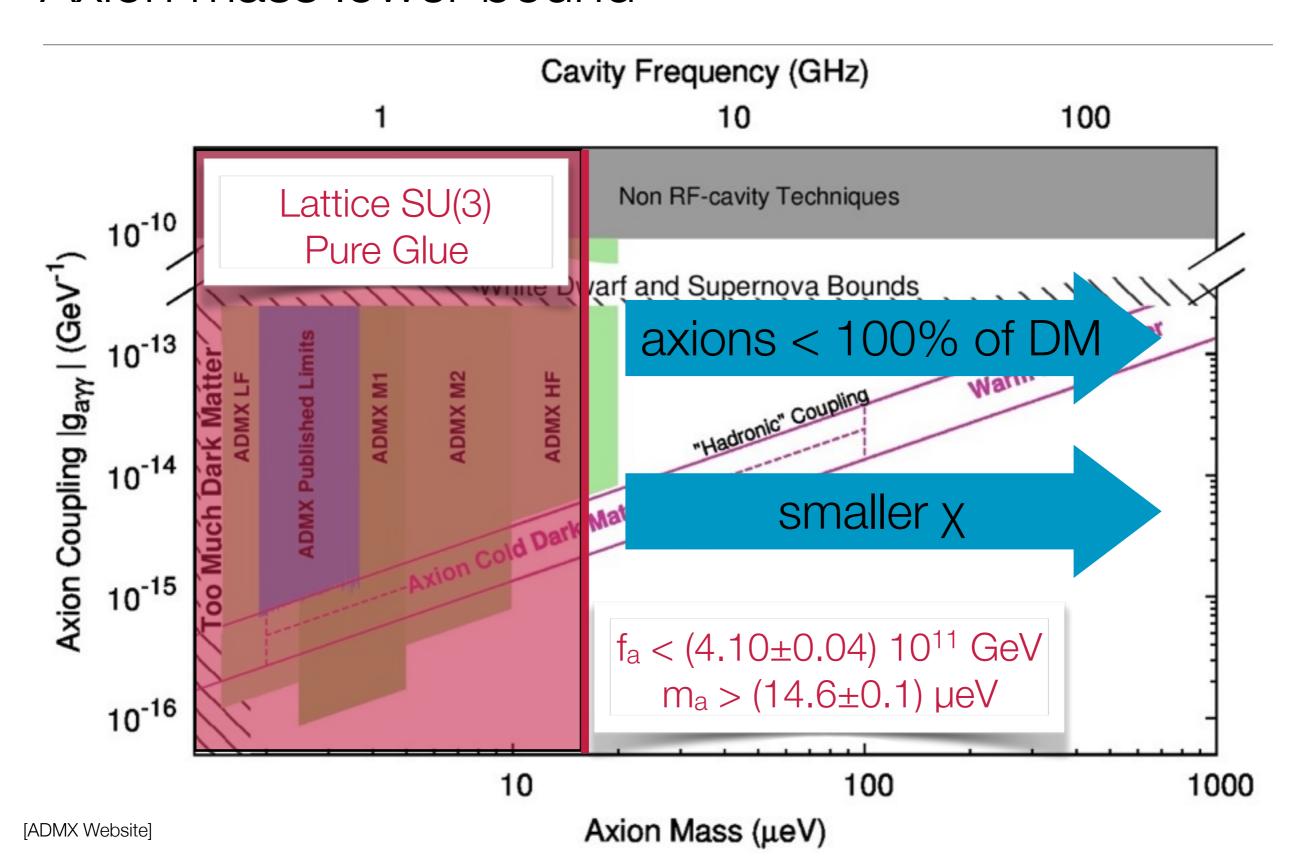
[Berkowitz, Buchoff, ER., 1505.07455]

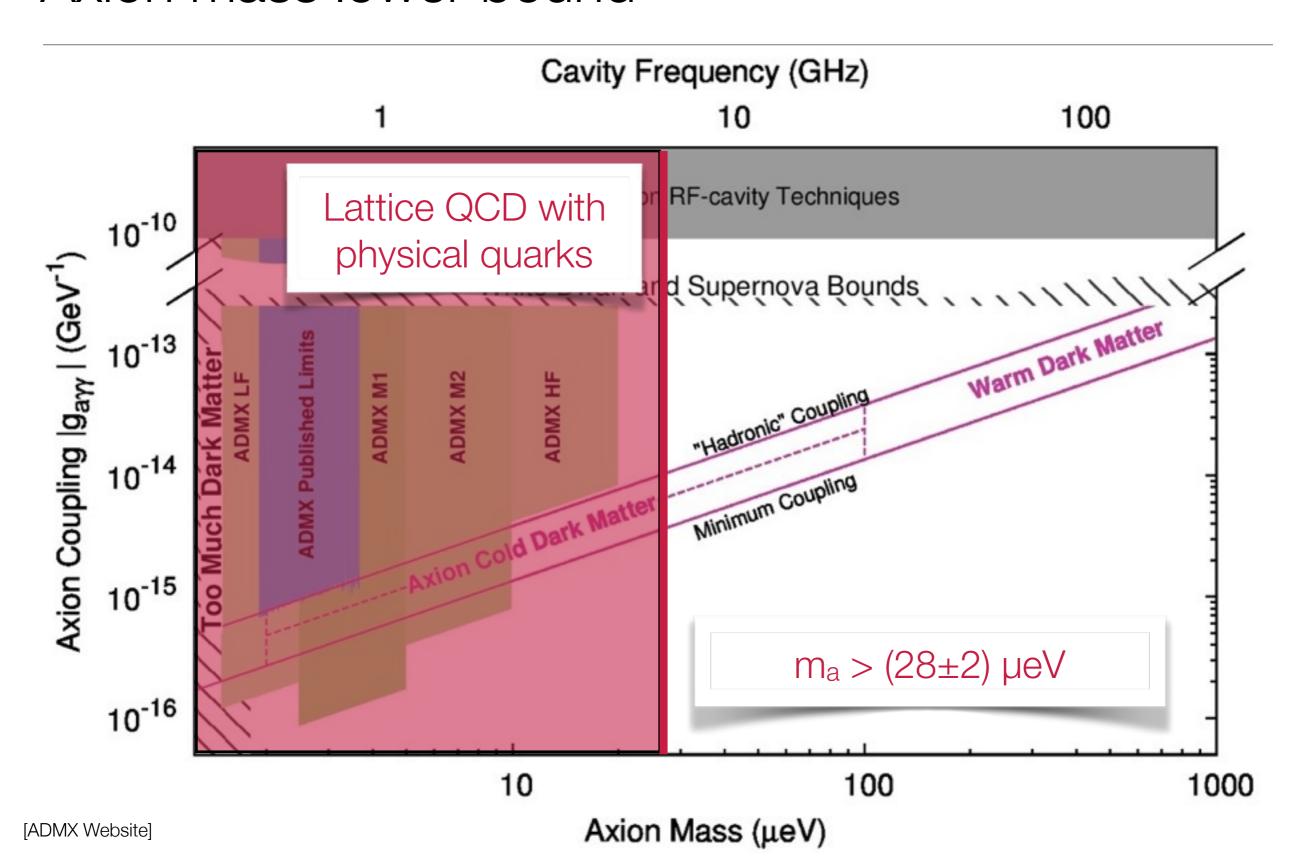


[Bonati et al., 1512.06746]



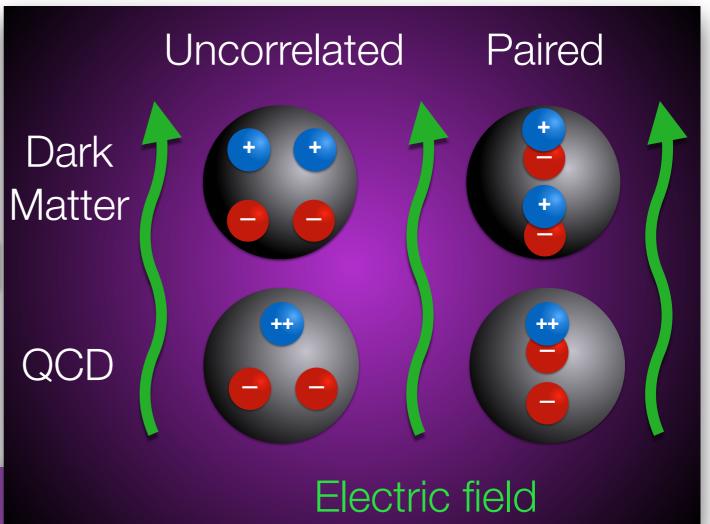


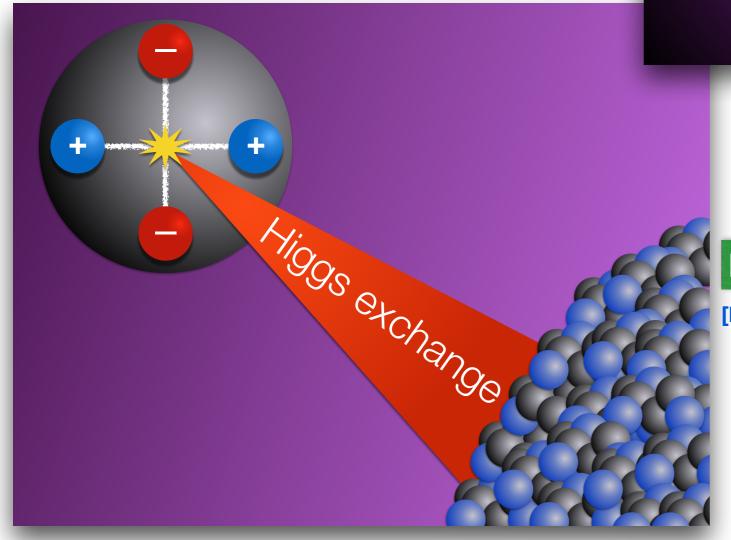




PRL Editors' Suggestion: Polarizability

[LSD collab., Phys. Rev. Lett. 115 (2015) 171803]





PRD Editors' Suggestion: Higgs exchange

[LSD collab., Phys. Rev. D92 (2015) 075030]