

Photon Propagation in Argon Gas

Gas Volume within GEM tracker (3mm):

Ar (80%) + CO2 (20%) mixture or Ar (70%) + CO2 (30%) mixture

Photon Propagation in Argon Gas


```
#ifndef remollPhysicsList h
#define remollPhysicsList h 1
#include "G4VModularPhysicsList.hh"
#include "G4GenericMessenger.hh"
class G4VPhysicsConstructor;
class remollPhysicsList: public G4VModularPhysicsList
  public:
    remollPhysicsList();
    virtual ~remollPhysicsList():
  public:
    // Set verbose level
    void SetVerboseLevel(G4int level);
    // Set Parallel physics
    void SetParallelPhysics(G4bool flag);
    // Enable Parallel physics
    void EnableParallelPhysics();
    // Disable Parallel physics
    void DisableParallelPhysics();
    // Set optical physics
    void SetOpticalPhysics(G4bool flag);
    // Enable optical physics
    void EnableOpticalPhysics();
    // Disable optical physics
    void DisableOpticalPhysics();
    // Set step limiter physics
    void SetStepLimiterPhysics(G4bool flag);
    // Enable step limiter physics
    void EnableStepLimiterPhysics();
    // Disable step limiter physics
    void DisableStepLimiterPhysics();
    // Handle reference physics lists in messenger
    void ListReferencePhysLists();
    void RemoveReferencePhysList();
    void RegisterReferencePhysList(G4String name);
```

Moller Hardware

- Reinspection
- GEM material didn't arrive

Articl

u-Channel Color Transparency Observables

Garth M. Huber 10, Wenliang B. Li 2,3,*0, Wim Cosyn 4,50 and Bernard Pire 60

- Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada; huberg@uregina.ca
- ² Center for Frontiers in Nuclear Science, Stony Brook University, Stony Brook, NY 11794, USA; billlee@jlab.org
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Physics, Florida International University, Miami, FL 3199, USA; wcosyn@fiu.edu
- Department of Physics and Astronomy, Ghent University, B9000 Gent, Belgium
- 6 CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, F91128 Palaiseau, France; bemard.pire@polytechnique.edu
- Correspondence: billlee@jlab.org

Abstract: The paper proposes to study the onset of color transparency in hard exclusive reactions in the backward regime. Guided by the encouraging Jefferson Laboratory (JLab) results on backward π and ω electroproduction data at moderate virtuality Q^2 , which may be interpreted as the signal of an early scaling regime, where the scattering amplitude factorizes in a hard coefficient function convoluted with nucleon to meson transition distribution amplitudes, the study shows that investigations of these channels on nuclear targets opens a new opportunity to test the appearance of nuclear color transparency for a fast-moving nucleon.

Keywords: color transparency; u-Channel meson production; colinear factorization

1. Introduction

Although a fundamental prediction of quantum chromodynamics (QCD) [1,2], the phenomenon of color transparency (CT) has been, for many decades, a domain of controversial interpretations of experimental data; for a review, see, e.g., [3]. Together with scaling laws and polarization tests, the increase in nuclear transparency (NT) ratio with the relevant hard scale (denoted as Q^2) is believed to constitute an important signal of the onset of a collinear QCD factorization regime where hadrons transverse sizes shrink proportionally to 1/Q, thus drastically diminishing final-state interaction cross-sections.

Near forward exclusive photon or meson electroproduction processes have been the subject of intense theoretical and experimental studies [4,5]. Most of the available data are now interpreted in terms of a collinear QCD factorized amplitude, where generalized parton distributions (GPDs) are the relevant hadronic matrix elements. The study of nuclear transparency for meson electroproduction [6,7] indeed revealed a growth of the NT ratio indicative of an early on-set of the scaling regime. This may, however, look contradictory to the non-dominance of the leading twist pion production amplitude revealed by the small value of the virtual photon's longitudinal-to-transverse structure function ratio, σ_1/σ_T , for

Citation: Huber, G.M.; Li, W.B; Cosyn, W; Pire, B u-Channel Color Transparency Observables. *Physics* 2022, 1, 1–13. https://doi.org/

Received: 09 February 2022 Accepted: 01 April 2022 Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil-...

Exclusive, Diffraction and Tagging Paper

J. K. Adkins³⁵, Y. Akiba⁵², A. Albataineh⁶⁸, M. Amaryan⁴⁶, I. C. Arsene⁷², J. Bae⁶⁰, X. Bai⁷⁷, M. Bashkanov⁸⁶, R. Bellwied⁶⁶ F. Benmokhtar¹⁴, J. C. Bernauer^{54,55,56}, F. Bock⁴⁸, W. Boeglin¹⁶, M. Borysova⁸², E. Brash¹⁰, P. Brindza²⁷, W. J. Briscoe²⁰ M. Brooks³¹, S. Bueltmann⁴⁶, M. H. S. Bukhari²⁶, A. Bylinkin⁶⁸, R. Capobianco⁶⁵, W.-C. Chang², Y. Cheon⁵⁸, K. Chen⁷ K.-F. Chen⁴⁵, K.-Y. Cheng³⁹, M. Chiu⁴, T. Chuio⁷⁵, Z. Citron¹, E. Cline^{54,55}, E. Cohen⁴³, T. Cormier⁴⁸, Y. Corrales Morales³¹ C. Cotton 77, C. Crawford 69, S. Creekmore 48, C. Cuevas 27, J. Cunningham 48, G. David 4, C. T. Dean 31, M. Demarteau 48, S. Diehl 65, N. Doshita⁸⁴, R. Dupré²³, J. M. Durham³¹, R. Dzhygadlo¹⁹, R. Ehlers⁴⁸, L. El Fassi³⁷, A. Emmert⁷⁷, R. Ent²⁷, C. Fanelli³⁶ R. Fatemi⁶⁹, S. Fegan⁸⁶, M. Finger⁸, M. Finger Jr.⁸, J. Frantz⁴⁷, M. Friedman²², I. Friscic⁸⁷, D. Gangadharan⁶⁶, S. Gardner¹⁸ K. Gates¹⁸, F. Geurts⁵¹, R. Gilman⁵³, D. Glazier¹⁸, E. Glimos⁴⁸, Y. Goto⁵², N. Grau³, S. V. Greene⁷⁸, A. O. Guo²⁴, L. Guo¹⁶ S. K. Ha⁸⁵, J. Haggerty⁴, T. Hayward⁶⁵, X. He¹⁷, O. Hen³⁶, D. W. Higinbotham²⁷, M. Hoballah²³, T. Horn¹², P.-h. J. Hsu⁴⁴ J. Huang⁴, G. Huber⁷³, A. Hutson⁶⁶, K. Y. Hwang⁸⁵, C. Hvde⁴⁶, M. Inaba⁶³, T. Iwata⁸⁴, H.-S. Jo³⁰, K. Joo⁶⁵, N. Kalantarians⁸⁰, K. Kawade⁵⁹, S. J. D. Kay⁷³, A. Kim⁶⁵, B. Kim⁶⁰, C. Kim⁵⁰, M. Kim⁵², Y. Kim⁵⁰, Y. Kim⁵⁸, E. Kistenev⁴, V. Klimenko⁶⁵ S. H. Ko⁵⁷, I. Korover³⁶, W. Korsch⁶⁹, G. Krintiras⁶⁸, S. Kuhn⁴⁶, C.-M. Kuo³⁹, T. Kutz³⁶, J. Lajoie²⁵, D. Lawrence²⁷, S. Lebedev²⁵, J. S. H. Lee⁵⁷, S. W. Lee³⁰, Y.-J. Lee³⁶, W. Li⁵¹, W. Li^{54,55,83}, X. Li⁹, X. Li³¹, Y. T. Liang²⁴, S. Lim⁵⁰, C.-h. Lin². D. X. Lin²⁴, K. Liu³¹, M. X. Liu³¹, K. Livingston¹⁸, N. Livanage⁷⁷, W. J. Llope⁸¹, C. Loizides⁴⁸, E. Long⁷¹, R.-S. Lu⁴⁵, Z. Lu⁹ W. Lynch⁸⁶, D. Marchand²³, M. Marcisovsky¹³, P. Markowitz¹⁶, P. McGaughey³¹, M. Mihovilovic⁷⁰, R. G. Milner³⁶, A. Milov⁸², Y. Miyachi⁸⁴, P. Monaghan¹⁰, R. Montgomery¹⁸, D. Morrison⁴, C. Munoz Camacho²³, M. Murray⁶⁸, K. Nagai³¹, J. Nagle⁶⁴ I. Nakagawa⁵², C. Nattrass⁷⁶, D. Nguyen²⁷, S. Niccolai²³, R. Nouicer⁴, G. Nukazuka⁵², M. Nycz⁷⁷, V. A. Okorokov⁴², S. Orešić⁷³ J.D. Osborn⁴⁸, C. O'Shaughnessy³¹, S. Paganis⁴⁵, Z. Papandreou⁷³, S. Pate⁴¹, M. Patel²⁵, C. Paus³⁶, G. Penman¹⁸. M. G. Perdekamp⁶⁷, D. V. Perepelitsa⁶⁴, H. Periera da Costa³¹, K. Peters¹⁹, W. Phelps¹⁰, E. Piasetzky⁶¹, C. Pinkenburg⁴ I. Prochazka⁸, T. Protzman³³, M. Purschke⁴, J. Putschke⁸¹, J. R. Pybus³⁶, R. Rajput-Ghoshal²⁷, J. Rasson⁴⁸, B. Raue¹⁶, K. Read⁴⁸ K. Røed⁷², R. Reed³³, J. Reinhold¹⁶, E. L. Renner³¹, J. Richards⁶⁵, C. Riedl⁶⁷, T. Rinn⁴, J. Roche⁴⁷, G. M. Roland³⁶, G. Ron²² M. Rosati²⁵, C. Rovon⁶⁸, J. Ryu⁵⁰, S. Salur⁵³, N. Santiesteban³⁶, R. Santos⁶⁵, M. Sarsour¹⁷, J. Schambach⁴⁸, A. Schmidt²⁰ N. Schmidt⁴⁸, C. Schwarz¹⁹, J. Schwiening¹⁹, R. Seidl⁵², A. Sickles⁶⁷, P. Simmerling⁶⁵, S. Sirca⁷⁰, D. Sharma¹⁷, Z. Shi³¹, T.-A. Shibata⁴⁰, C.-W. Shih³⁹, S. Shimizu⁵², U. Shrestha⁶⁵, K. Slifer⁷¹, K. Smith³¹, R. Soltz³⁴, W. Sondheim³¹, J. Song⁹, J. Song⁵⁰ I. I. Strakovsky²⁰, P. Steinberg⁴, J. Stevens⁸³, J. Strube⁴⁹, P. Sun⁹, X. Sun⁷, K. Suresh⁷³, W.-C. Tang³⁹, S. Tapia Araya²⁵ S. Tarafdar⁷⁸, L. Teodorescu⁵, A. Timmins⁶⁶, L. Tomasek¹³, N. Trotta⁶⁵, R. Trotta¹², T. S. Tveter⁷², E. Umaka²⁵, A. Usman⁷³, H. W. van Hecke³¹, J. Velkovska⁷⁸, E. Voutier²³, P.K. Wang²³, Q. Wang⁶⁸, Y. Wang⁶⁷, Y. Wang⁶², D. P. Watts⁸⁶, L. Weinstein⁴⁶ M. Williams³⁶, C.-P. Wong³¹, L. Wood⁴⁹, M. H. Wood⁶, C. Woody⁴, B. Wyslouch³⁶, Z. Xiao⁶², Y. Yamazaki²⁹, Y. Yang³⁸, Z. Ye⁶² H. D. Yoo⁸⁵, M. Yurov³¹, N. Zachariou⁸⁶, W.A. Zaic¹¹, J. Zhang⁷⁷, Y. Zhang⁶², Y. X. Zhao²⁴, X. Zheng⁷⁷, P. Zhuang⁶²

Deep Learning-based Muon Identification for the ECCE Detector

J. K. Adkins³⁵, Y. Akiba⁵², A. Albataineh⁶⁸, M. Amaryan⁴⁶, I. C. Arsene⁷², J. Bae⁶⁰, X. Bai⁷⁷, M. Bashkanov⁸⁶, R. Bellwied⁶⁶ F. Benmokhtar¹⁴, J. C. Bernauer^{54,55,56}, F. Bock⁴⁸, W. Boeglin¹⁶, M. Borysova⁸², E. Brash¹⁰, P. Brindza²⁷, W. J. Briscoe²⁰, M. Brooks³¹, S. Bueltmann⁴⁶, M. H. S. Bukhari²⁶, A. Bylinkin⁶⁸, R. Capobianco⁶⁵, W.-C. Chang², Y. Cheon⁵⁸, K. Chen⁷ K.-F. Chen⁴⁵, K.-Y. Chene³⁹, M. Chiu⁴, T. Chuio⁷⁵, Z. Citron¹, E. Cline^{54,55}, E. Cohen⁴³, T. Cormier⁴⁸, Y. Corrales Morales³¹ C. Cotton 77, C. Crawford 69, S. Creekmore 48, C. Cuevas 27, J. Cunningham 48, G. David 4, C. T. Dean 31, M. Demarteau 48, S. Diehl 65 N. Doshita⁸⁴, R. Dupré²³, J. M. Durham³¹, R. Dzhygadlo¹⁹, R. Ehlers⁴⁸, L. El Fassi³⁷, A. Emmert⁷⁷, R. Ent²⁷, C. Fanelli³⁶ R. Fatemi⁶⁹, S. Fegan⁸⁶, M. Finger⁸, M. Finger Jr.⁸, J. Frantz⁴⁷, M. Friedman²², I. Friscic⁸⁷, D. Gangadharan⁶⁶, S. Gardner¹⁸ K. Gates¹⁸, F. Geurts⁵¹, R. Gilman⁵³, D. Glazier¹⁸, E. Glimos⁴⁸, Y. Goto⁵², N. Grau³, S. V. Greene⁷⁸, A. Q. Guo²⁴, L. Guo¹⁶ S. K. Ha⁸⁵, J. Haggerty⁴, T. Hayward⁶⁵, X. He¹⁷, O. Hen³⁶, D. W. Higinbotham²⁷, M. Hoballah²³, P.-h. J. Hsu⁴⁴, J. Huang⁴, G. Huber⁷³, A. Hutson⁶⁶, K. Y. Hwang⁸⁵, C. Hyde⁴⁶, M. Inaba⁶³, T. Iwata⁸⁴, H.-S. Jo³⁰, K. Joo⁶⁵, N. Kalantarians⁸⁰, K. Kawade⁵⁹ S. Kay⁷³, A. Kim⁶⁵, B. Kim⁶⁰, C. Kim⁵⁰, M. Kim⁵², Y. Kim⁵⁰, Y. Kim⁵⁸, E. Kistenev⁴, V. Klimenko⁶⁵, S. H. Ko⁵⁷, I. Korover³⁶ W. Korsch⁶⁹, G. Krintiras⁶⁸, S. Kuhn⁴⁶, C.-M. Kuo³⁹, T. Kutz³⁶, J. Lajoie²⁵, D. Lawrence²⁷, S. Lebedev²⁵, J. S. H. Lee⁵⁷ S. W. Lee³⁰, Y.-J. Lee³⁶, W. Li⁵¹, W. Li⁵⁴,55,83, X. Li⁹, X. Li³¹, Y. T. Liang²⁴, S. Lim⁵⁰, C.-h. Lin², D. X. Lin²⁴, K. Liu³¹ M. X. Liu³¹, K. Livingston¹⁸, N. Liyanage⁷⁷, W. J. Llope⁸¹, C. Loizides⁴⁸, E. Long⁷¹, R.-S. Lu⁴⁵, Z. Lu⁹, W. Lynch⁸⁶, D. Marchand²³, M. Marcisovsky¹³, P. Markowitz¹⁶, P. McGaughey³¹, M. Mihovilovic⁷⁰, R. G. Milner³⁶, A. Milov⁸², Y. Miyachi⁸⁴ P. Monaghan¹⁰, R. Montgomery¹⁸, D. Morrison⁴, C. Munoz Camacho²³, M. Murray⁶⁸, K. Nagai³¹, J. Nagle⁶⁴, I. Nakagawa⁵² C. Nattrass⁷⁶, D. Nguyen²⁷, S. Niccolai²³, R. Nouicer⁴, G. Nukazuka⁵², M. Nycz⁷⁷, V. A. Okorokov⁴², S. Orešić⁷³, J.D. Osborn⁴⁸, C. O'Shaughnessy³¹, S. Paganis⁴⁵, Z. Papandreou⁷³, S. Pate⁴¹, M. Patel²⁵, C. Paus³⁶, G. Penman¹⁸, M. G. Perdekamp⁶⁷ D. V. Perepelitsa⁶⁴, H. Periera da Costa³¹, K. Peters¹⁹, W. Phelps¹⁰, E. Piasetzky⁶¹, C. Pinkenburg⁴, I. Prochazka⁸, T. Protzman³³ M. Purschke⁴, J. Putschke⁸¹, J. R. Pybus³⁶, R. Raiput-Ghoshal²⁷, J. Rasson⁴⁸, B. Raue¹⁶, K. Read⁴⁸, K. Røed⁷², R. Reed³³ J. Reinhold¹⁶, E. L. Renner³¹, J. Richards⁶⁵, C. Riedl⁶⁷, T. Rinn⁴, J. Roche⁴⁷, G. M. Roland³⁶, G. Ron²², M. Rosati²⁵, C. Royon⁶⁸ J. Rvu⁵⁰, S. Salur⁵³, N. Santiesteban³⁶, R. Santos⁶⁵, M. Sarsour¹⁷, J. Schambach⁴⁸, A. Schmidt²⁰, N. Schmidt⁴⁸, C. Schwarz¹⁹ J. Schwiening¹⁹, R. Seidl⁵², A. Sickles⁶⁷, P. Simmerling⁶⁵, S. Sirca⁷⁰, D. Sharma¹⁷, Z. Shi³¹, T.-A. Shibata⁴⁰, C.-W. Shih³⁹ S. Shimizu⁵², U. Shrestha⁶⁵, K. Slifer⁷¹, K. Smith³¹, R. Soltz³⁴, W. Sondheim³¹, J. Song⁹, J. Song⁵⁰, I. I. Strakovsky²⁰ P. Steinberg⁴, J. Stevens⁸³, J. Strube⁴⁹, P. Sun⁹, X. Sun⁷, K. Suresh⁷³, W.-C. Tang³⁹, S. Tapia Araya²⁵, S. Tarafdar⁷⁸ L. Teodorescu⁵, A. Timmins⁶⁶, L. Tomasek¹³, N. Trotta⁶⁵, T. S. Tveter⁷², E. Umaka²⁵, A. Usman⁷³, H. W. van Hecke³¹ J. Velkovska⁷⁸, E. Voutier²³, P.K. Wang²³, Q. Wang⁶⁸, Y. Wang⁷, Y. Wang⁶², D. P. Watts⁸⁶, L. Weinstein⁴⁶, M. Williams³⁶ C.-P. Wong³¹, L. Wood⁴⁹, M. H. Wood⁶, C. Woody⁴, B. Wyslouch³⁶, Z. Xiao⁶², Y. Yamazaki²⁹, Y. Yang³⁸, Z. Ye⁶², H. D. Yoo⁸⁵ M. Yurov³¹, N. Zachariou⁸⁶, W.A. Zajc¹¹, J. Zhang⁷⁷, Y. Zhang⁶², Y. X. Zhao²⁴, X. Zheng⁷⁷, P. Zhuang⁶²

LA Allekannan Mational Fabruatura Vannan Amerika

A. Alikhanyan National Laboratory, Yerevan, Armenia

Institute of Physics, Academia Sinica, Taipei, Taiwan