Correlation of Leading Hadrons in Jet

$$r_c = \frac{Y_{cc} - Y_{c\bar{c}}}{Y_{cc} + Y_{c\bar{c}}}$$

Where c is the charged final hadron $(\pi^{\pm}, K^{\pm} \text{ and } p/\bar{p})$

r_C with beagle

Basic Info

- Collision hard $pT > 15 \ GeV$
- particle: $|\eta| < 2.5$; $p_T > 2 \ GeV$
- jet: R = 0.6; $p_T > 10 \ GeV$

Number of Jets and Particle $\Delta \phi$

 With the decrease of centrality (impact parameter), number of 2-jets events decrease (due to medium impact)

r_c Dependence on jet p_T

r_c Dependence on Open angle

r_c Dependence on Leading p/jet p

7

r_c Dependence on Next-Leading p/Leading p

- 5

r_c Dependence on k_\perp

K_{pep}

)

 r_c Dependence on z

r_c Dependence on FT

