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Machine Learning Based Accelerator Control

Goals:
• Automate routine tasks + improve performance

• Enable new capabilities

Challenges:
• Practical constraints and complexities of realistic accelerators

• Incorporating prior knowledge

• Scaling
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Controlling Beam Optics with Electromagnets
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Modeling Hysteresis Effects in Accelerators

We generally only have control over 

applied currents to magnetic elements

• Current optimization schemes 

ignore hysteresis effects

• Need to develop a fast-modeling 

strategy to improve online control 

without measuring the hysteresis 

curve directly
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Hysteresis Effects in Electromagnets

Major loop

Minor loop
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Realistic Accelerator Magnets
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The Preisach Model for Hysteresis

Model magnetic domains 

as individual “hysterons”

Determine the hysteron 

density

Determine hysteron states 

via history of applied fields
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Parametric Preisach Modeling

𝜇 𝛼, 𝛽 = 𝑓(𝛼, 𝛽; 𝜃)
Sutor et al. (2010)
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Non-parametric Preisach Modeling

𝜇 𝛼, 𝛽 = 𝑓(𝛼, 𝛽; 𝜃) → 𝜇𝑖 = 𝜇(𝛼𝑖 , 𝛽𝑖)

However, this greatly increases the number of free parameters.

How to solve?

Limited by 

model 

selection



10

Differentiable Non-parametric Preisach Modeling

Keep track of derivative 

information during every

calculation step.

Enables gradient based 

optimization of model error 

with respect to all free 

parameters using the chain 

rule.

Easily optimize models with 

~10k free parameters. Image credit: Ayoosh Kathuria



Discretize the space into n x n grid and 

treat the density at each grid point as a free 

parameter
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Simple Example

𝝁 = {𝜇1, 𝜇2, … , 𝜇𝑁}

𝑀 𝐻0:𝑡; 𝝁 =

𝑖=1

𝑁

𝜇𝑖𝛾𝑖(𝐻0:𝑡)

𝑙𝑜𝑠𝑠(𝝁) = MSE(𝒀,𝑴(𝑯; 𝝁))

𝝁∗ = argmin𝝁 𝑙𝑜𝑠𝑠(𝝁)
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Modeling SLAC Quadrupole Magnets

Measured integrated gradient Normalized Deviation

PerturbationPolynomial Total
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Modeling SLAC Quadrupoles

Polynomial fit error: 0.23% Train error: 0.015% Test error: 0.051%

Roussel R. et al., Accepted by PRL
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Full Stack Modeling

Can we extend this process to 

modeling magnets in the 

beamline already?

Combine the hysteresis model 

with a flexible model for the 

beam response: a Gaussian 

Process, train both models 

simultaneously

Allows us to measure 

hysteresis characteristics 

using beam-based

measurements



15

Gaussian Process Surrogate Models

Use Gaussian Processes to represent noisy beam attributes 

as a function of magnetic fields.
Rasmussen, C.E.; Williams, C.K.I (2006).

Prior belief Posterior belief



Gaussian Processes - Hyperparameters

Rasmussen, C.E.; Williams, C.K.I (2006).
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Example: APS Injector
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Full Stack Modeling

Modeling w/o Hysteresis Modeling w/ Hysteresis

Roussel R. et al., Accepted by PRL
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Full Stack Optimization

Now use the joint model to 

optimize accelerator inputs to 

achieve beam objectives.
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Machine Learning Based Accelerator Control

Benefits:
• Specify trade-off between exploration and exploitation

• Inherently improves model accuracy in regions of interest

• Enables serial or parallelized optimization strategies
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Beamline Optimization with Hysteresis
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Beamline Optimization with Hysteresis

Roussel R. et al., Accepted by PRL
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Conclusions

We can create flexible, high-

fidelity models of magnetic 

elements exhibiting hysteresis

We can combine the 

hysteresis and beam 

response models to create a 

complete model of the beam 

response as a function of 

controllable parameters.


