Differentiable Preisach Modeling for Particle Accelerator Systems with Hysteresis

Ryan Roussel

rroussel@slac.stanford.edu

Machine Learning Based Accelerator Control

Goals:

- Automate routine tasks + improve performance
- Enable new capabilities

Challenges:

Practical constraints and complexities of realistic accelerators

Accelerated beam

Incorporating prior knowledge

f(x)

SLAC

HPC Physics Simulation

Measurement

Database

Controlling Beam Optics with Electromagnets

Quadrupole (focusing) magnets

Insertable diagnostic screens

Modeling Hysteresis Effects in Accelerators

We generally only have control over applied currents to magnetic elements

- Current optimization schemes ignore hysteresis effects
- Need to develop a fast-modeling strategy to improve online control without measuring the hysteresis curve directly

Hysteresis Effects in Electromagnets

Realistic Accelerator Magnets

6

The Preisach Model for Hysteresis

(a) $\hat{\gamma}_{\alpha\beta}u(t)$ (b) α (c) α α_m +1S u_1 $\mu(\alpha,\beta)$ u_3 α β_m u(t)S+В $\mu(\alpha,\beta) = 0$ f(t) $\cdot u(t)$ $u_2 \quad u_3$ u_1 u_2

Model magnetic domains as individual "hysterons"

Determine the hysteron Determine the hysteron Determine the hysteron Determine the history via history between the hysteron Determine the

Determine hysteron states via history of applied fields

$$M(\mathbf{H}_{0:t}) = \int_{S+} \mu(\beta, \alpha) d\beta d\alpha - \int_{S-} \mu(\beta, \alpha) d\beta d\alpha$$

7

Parametric Preisach Modeling

8

Non-parametric Preisach Modeling

However, this greatly increases the number of free parameters. How to solve?

Differentiable Non-parametric Preisach Modeling

Keep track of derivative information during **every** calculation step.

Enables gradient based optimization of model error with respect to all free parameters using the chain rule.

Easily optimize models with ~10k free parameters.

Simple Example

Discretize the space into n x n grid and treat the density at each grid point as a free parameter

$$\boldsymbol{\mu} = \{\mu_1, \mu_2, \dots, \mu_N\}$$
$$M(H_{0:t}; \boldsymbol{\mu}) = \sum_{i=1}^N \mu_i \gamma_i(H_{0:t})$$

$$loss(\mu) = MSE(Y, M(H; \mu))$$

 $\mu^* = \operatorname{argmin}_{\mu} loss(\mu)$

O PyTorch

a (T)

Magnetic Hysteresis Loops

Modeling SLAC Quadrupole Magnets

Modeling SLAC Quadrupoles

Polynomial fit error: 0.23% Train error: 0.015% Test error: 0.051%

Can we extend this process to modeling magnets **in the beamline already?**

Combine the hysteresis model with a flexible model for the beam response: a **Gaussian Process,** train both models **simultaneously**

Allows us to measure hysteresis characteristics using **beam-based** measurements

Gaussian Process Surrogate Models

Use Gaussian Processes to represent noisy beam attributes as a function of magnetic fields.

Gaussian Processes - Hyperparameters

Rasmussen, C.E.; Williams, C.K.I (2006).

Example: APS Injector

Full Stack Modeling

Modeling w/o Hysteresis

Modeling w/ Hysteresis

Full Stack Optimization

Now use the joint model to **optimize** accelerator inputs to achieve beam objectives.

Machine Learning Based Accelerator Control

-SLAC

Bayesian Optimization Algorithm

Benefits:

- Specify trade-off between exploration and exploitation
- Inherently improves model accuracy in regions of interest
- Enables serial or parallelized optimization strategies

Beamline Optimization with Hysteresis

Beamline Optimization with Hysteresis

= 2.0 β^* $\beta^* = 0.1$ 10¹ $(mm) \frac{1}{\sqrt[|A|^2} \frac{1}{10^{-1}}$ GP, $H_{\varepsilon}=0$ GP, $H_{\varepsilon}=0.1$ \longrightarrow H-GP, $H_{\varepsilon}=0.1$ GP, $H_{\varepsilon}=0.4$ = H-GP, $H_{\varepsilon}=0.4$ 0 50 200 50 200 100 150 0 100 150 Iteration Iteration

Conclusions

We can create flexible, highfidelity models of magnetic elements exhibiting hysteresis

We can combine the hysteresis and beam response models to create a complete model of the beam response as a function of controllable parameters.

