SECONDARY INSTRUMENTATION AND THE SEARCH FOR NEW PHYSICS

Mmmm

Channel UA328

Chris Stanford Harvard University BNL Seminar

Instrumentation

The design, provision, or use of measuring instruments.

Oxford Languages

CERN

Secondary Instrumentation

Instrumentation done to help another experiment achieve its science goals.

New Physics Exploring the big questions

3 Experiments

WIMP Dark Matter

Low-mass Dark Matter

v hierarchy, CP violation (matter-antimatter assym.), solar and supernova *v*, dark matter, sterile *v*, non-standard *v* interactions, etc.

Experiment #1

Secondary Instrumentation

A tabletop radon daughter detector

Science Goal: WIMP Dark Matter Search

Pulse Shape Discrimination

Run 7027 Event 354474 TPC Sum Channels

Run 15979 Event 75755 TPC Sum Channels

Surface Backgrounds

Surface decays of radioisotopes were a big question mark

Surface Backgrounds

Argon	
TPB	
Teflon	

What do these signals look like?

Secondary Instrumentation

Radon Daughter and Organic Scintillator Experiment

Evaporator

TPB Sample

Radon Chamber

Background Confirmed

Background Confirmed

Long tail

Millisecond-long scintillation lifetime, much longer than the LAr scintillation lifetimes.

 $f_{_{90}}$ (7µs window) ~ 0.7 (nuclear recoil-like, bad) $f_{_{90}}$ (2ms window) ~ 0.2 (good)

Background Confirmed

Seen in DarkSide-50 Data

21

After Cuts

After developing a dedicated cut for this tail, we achieved greater than 10³ rejection for surface background rejection while maintaining 99% nuclear recoil acceptance.

Result

DarkSide-50 532-day dark matter search with low-radioactivity argon

P. Agnes *et al.* (DarkSide Collaboration) Phys. Rev. D **98**, 102006 – Published 16 November 2018 As a result of this secondary instrumentation project, DarkSide-50 managed to succeed in its science goal of performing a background-free WIMP dark matter search.

Experiment #2

Readout board GGG heat sinking **Detector Box SQUIDS** (~300mK) (~50mK) (~1.3K) Nb Can location

SuperCDMS HVeV

Secondary Instrumentation

A helium-3 fridge and optical system

Science Goal: Low-mass Dark Matter Search

Result

Dark Photon Search Results

In order to make a plot like this, you need to know the expected interaction rate of the dark photon for a given mass and cross-section.

First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector

R. Agnese et al.

Phys. Rev. Lett. 121, 051301 – Published 3 August 2018; Erratum Phys. Rev. Lett. 122, 069901 (2019)

Cross-sections

Dark photons

$$\sigma_{A'}(E_{A'}) = \frac{\varepsilon_{\text{eff}}^2}{v_{A'}} \sigma_{\text{p.e.}}(E_{A'}) n\hbar c$$
$$\sigma_a(m_a) = \sigma_{\text{p.e.}}(m_a c^2) \frac{g_{ae}^2}{\beta_a} \frac{3m_a^2}{16\pi\alpha m_e^2}$$

Axion-like particles

Also found in bremsstrahlung and Migdal effect searches.

These searches are directly dependent upon $\sigma_{_{PE'}}$ the photoelectric absorption cross-section of the standard model photon with the target material.

But $\sigma_{_{\rm PE}}$ was not well known at < 1 K temperatures.

Cross-sections

Experiment #2

Readout board GGG heat sinking Detector Box **SQUIDS** (~300mK) (~50mK) (~1.3K) Nb Can location

SuperCDMS HVeV

Secondary Instrumentation

A helium-3 fridge and optical system

Absolute measurements of $\sigma_{\rm PE}$ are difficult. They require knowing things like the precise amount of incoming light, the amount of reflected light, the quantum efficiency of the detector, etc.

Our solution was to perform a relative measurement, which eliminated all these systematics.

Secondary Instrumentation

We built a dedicated experiment to perform this measurement at <1K

Si Wafers

^(D) C. Stanford^{1,2,a)}, ^(D) M. J. Wilson^{3,4}, ^(D) B. Cabrera^{1,5,b)}, M. Diamond³, N. A. Kurinsky^{6,7}, R. A. Moffatt¹, ^(D) F. Ponce¹, ^(D) B. von Krosigk⁴, and B. A. Young⁸

As a result of this instrumentation project, the SuperCDMS HVeV detectors (and all other

Si-based dark matter detectors) are now able to accurately state their science results.

Experiment #3

Secondary Instrumentation

DUNE

The Digital Wire Analyzer

Primary science goals: neutrino mass hierarchy and CP violating phase angle
Experiment #3

Secondary Instrumentation

DUNE

The Digital Wire Analyzer

Primary science goals: neutrino mass hierarchy and CP violating phase angle

Low-energy: Solar and supernova *v* sensitivity BSM: dark matter, sterile *v*, non-standard *v* interactions, CPT violation, and other new physics

Sanford Underground Research Facility

Far Detector Module

Liquid Argon

Time Projection Chamber

Anode Plane Assembly

Wire Tensions

Wires in an plane assemblies have tension tolerances

Too loose:

Might touch neighboring wire or pick up too much noise

Too tight: -

Might snap after cooling, shorting wires and ruining detector

Wire Tensions

Wires in an plane assemblies have tension tolerances

Too loose:

Might touch neighboring wire or pick up too much noise

Too tight: -

Might snap after cooling, shorting wires and ruining detector

Wire Tensions: Laser Method

Wires tensions in APAs are traditionally measured individually and are time consuming to measure. Each APA has over 5000 wires and takes 2 people ~80 hours.

The Electrical Method

Channels n-1 and n+1 biased with AC(ω) and DC.

The frequency ω is varied, while the voltage of channel n is read out.

The frequency at which the wire resonates determines the tension.

Proof of concept

D. Garcia-Gamez et al. (2019): https://doi.org/10.1016/j.nima.2018.09.031

The Electrical Method

Also, the wires are not always physically accessible.

Relay Board (x2)

Flex Cable

Connecting to an APA

Connecting to an APA

Support

Connect	Connect 300100002-0001-US200-01-00-00 Start							Software		
DWA Into	/ Stim	ulus / Re	sults \/	Tensions \/ Log \/ Ev	ent Viewer)		Boitwa		
DWA MAC N/A	Cor	nfig Ad	vanced	V(t) grid V(t) cha	an A(f) g	rid A(f) ch	ian			
DWA IP N/A Client IP N/A	Measured By Chris Stanford Stage DWA Development ~									
Firmware N/A	La	ver	G	G						
Period N/A	Si	de	Δ	~						
State N/A HV AC HV DC	He	eadboard	1 🗦							
Error state N/A	Ту	/pe		ontinuity 🗹 Tension						
				Configure Scan List						
Scan freqs [Hz]			DWA	is not connected						
Min		Туре	Status	Wires	Freq Min (Hz)	Freq Max (Hz)	Step Size (Hz)		^	
Step Active	1	Continuity	Pending	[2, 4, 6, 8, 10, 12, 14, 16]	100	950	50			
		Tension	Pending	[2, 4, 6, 8, 10, 12, 14, 16]	74	102	0.125			
	3	Continuity	Pending	[3, 5, 7, 9, 11, 13, 15, 17]	100	950	50			
	4	Tension	Pending	[3, 5, 7, 9, 11, 13, 15, 17]	74	102	0.125			
	5 6 7	Continuity	Pending	[18, 20, 22, 24, 26, 28, 30, 32]	100	950	50			
		Tension	Pending	[18, 20, 22, 24, 26, 28, 30, 32]	74	102	0.125			
		Continuity	Pending	[19, 21, 23, 25, 27, 29, 31, 33]	100	950	50			
	8	Tension	Pending	[19, 21, 23, 25, 27, 29, 31, 33]	74	102	0.125			
	9	Continuity	Pending	[34, 36, 38, 40, 42, 44, 46, 48]	100	950	50			
	10 11 12 13	Tension	Pending	[34, 36, 38, 40, 42, 44, 46, 48]	74	102	0.125			
		Continuity	Pending	[35, 37, 39, 41, 43, 45, 47, 49]	100	<mark>9</mark> 50	50			
		Tension	Pending	[35, 37, 39, 41, 43, 45, 47, 49]	74	102	0.125			
		Continuity	Pending	[1]	100	950	50			
		Tension	Pending	[1]	74	102	0.125		v	
		Automate	e scanning				Slind selected acan			
	error	Bits				N/A		buttonStatus	N/A 59	

DWA: Digital Wire Analyzer

60

0 X

61

Ø X

Resonance Identification

We expect multiple resonances per wire.

We get a "ringing" effect due to the speed of the frequency sweep.

Resonance Identification

Some channels are more complex and are made up of separate segments.

DWA: Digital Wire Analyzer

DWA: Digital Wire Analyzer File Views

State

Consistency Check

Measurements with the DWA are highly repeatable.

Results

8.5

DWA > Laser DWA < Laser Tolerance 8.0 G wire tensions (laser) G wire tensions (DWA) * 7.5 0.7 Tension (N) , 6.0 5.5 5.0 290 300 310 320 330

G Wire Segment

Real APA tensions.

Highly consistent with the laser method.

5x faster than laser, and only 1 operator.

340

Results

Real APA tensions.

Highly consistent with the laser method.

5x faster than laser, and only 1 operator.

Results

The electrical method:

- High speed
- High accessibility

The DWA:

- High accuracy
- High precision

The DWA will be used to ensure we produce a functional experiment that can meet its science goals.

Summary

Summary

Secondary instrumentation can be just as important to the success of an experiment as primary instrumentation.

Thank You

Result

Results from the first use of low radioactivity argon in a dark matter search

P. Agnes et al. (DarkSide Collaboration)

Phys. Rev. D 93, 081101(R) - Published 8 April 2016; Erratum Phys. Rev. D 95, 069901 (2017)

77