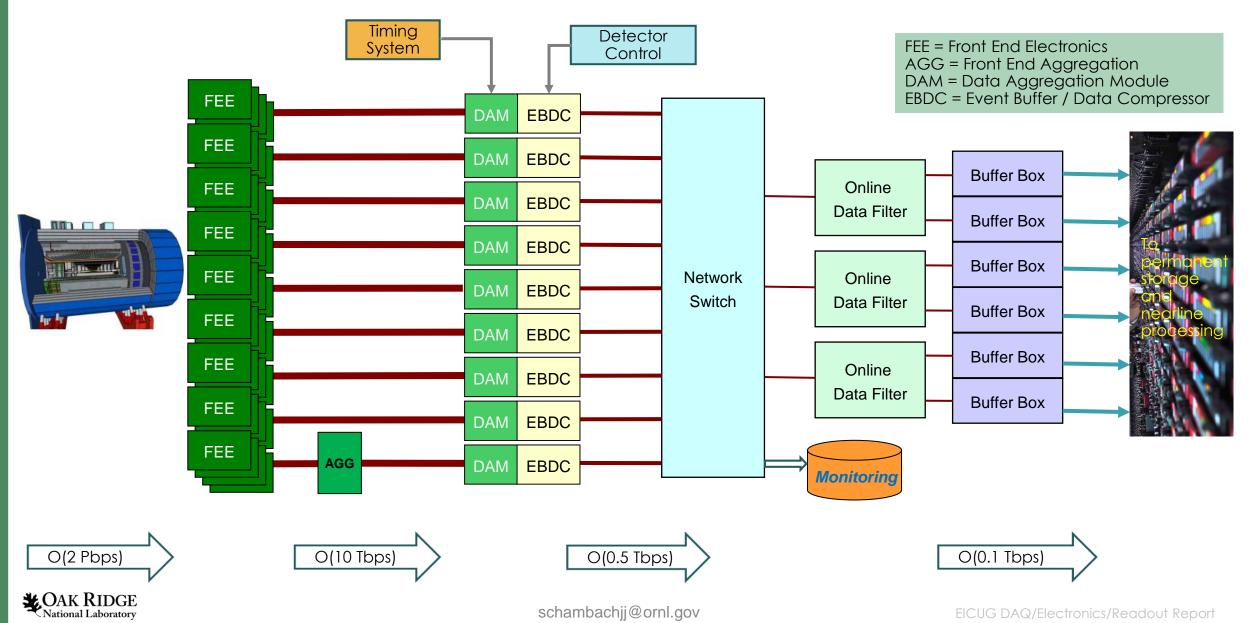
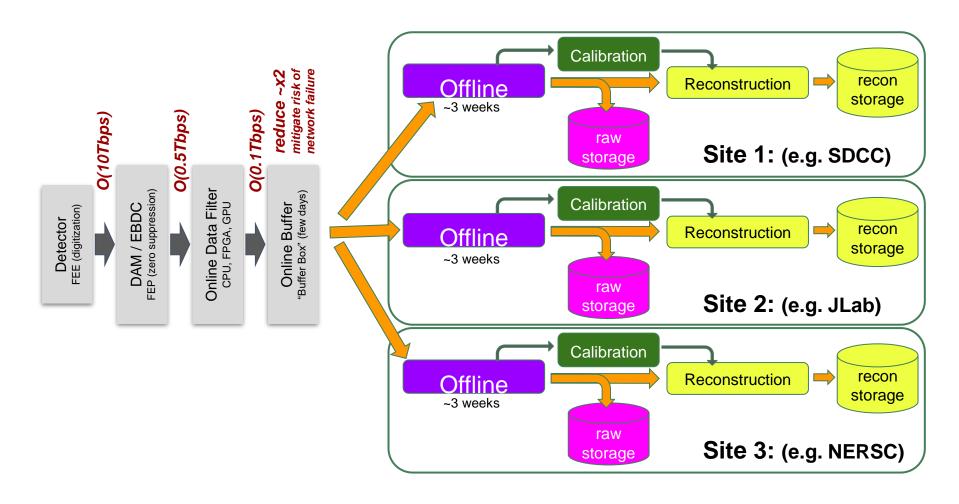


DAQ/Electronics/Readout Working Group

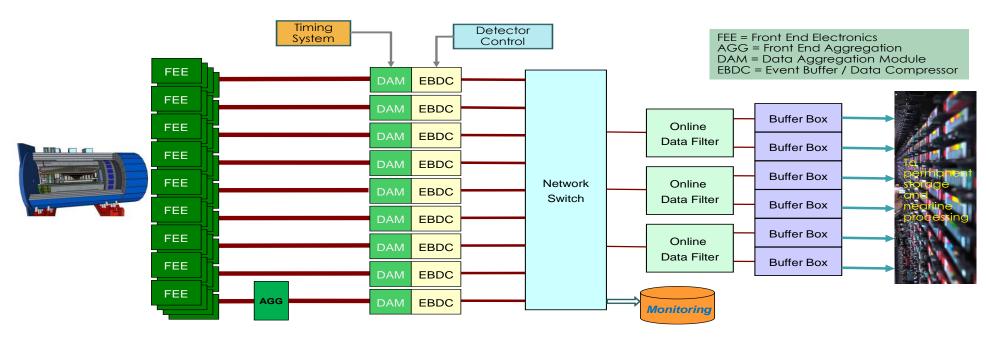
- Conveners: A. Camsonne, C. Cuevas, J. Landgraf, J. Schambach
- 23 Institutes expressed interest in working on DAQ
- Mailing list: eic-projdet-daq-l@lists.bnl.gov
- Indico category: https://indico.bnl.gov/category/409/
- Wiki: https://wiki.bnl.gov/eic-project-detector/index.php/DAQ
- <u>Mattermost</u> channel: https://eic.cloud.mattermost.com/main/channels/det1-dag
 Signup: https://eic.cloud.mattermost.com/signup_user_complete/?id=i8gnmob4stdrpjfrezhegxs3ew
- Talks from last <u>Streaming Readout Workshop X</u>: https://indico.jlab.org/event/519/timetable/#all.detailed
- <u>Live Notes from SRO workshop:</u>
 https://docs.google.com/document/d/1vFz1Z9c4Ck7eaE_eMcJgzg_UNUsYwC1OnygzlX95yic/edit#heading=h.175xdrpf8ddv
- A <u>summary report</u> for the SRO workshop is here: https://docs.google.com/document/d/1X6Ms_oubcWx-8DUiExMFIJdCC6svWNbWKiz7OQjMCeQ/edit?usp=sharing
- Schedule: Future meetings will be Thursdays @ 9:00 EDT



Executive Summary


- ➤ Since DPAP decision we had 10 WG meetings with participation between 10 and 20 collaborators and a workshop on Streaming Readout ("Streaming Readout Workshop X")
- > There is wide agreement within the DAQ WG on the general scheme of the streaming readout
- Nonetheless there are still two detectors for which software triggering (or at least selection based upon correlation with other detectors) is planned:
 - > dRICH under the assumption of SiPM readout
 - Far backward where high-rate data is consolidated into beam parameters using histogramming, but sampling is desired in conjunction with central detector activity.
- > We have had and plan to continue to have reports on the developments in the detector groups
 - Reports so far: Calorimeters (O. Hartbrich), MPGD (I. Mandjavidze), TOF (T. Ljubicic), Far Forward & Far Backward (J. Landgraf), RICH (A. Camsonne), dRICH (P. Antonioli)
- The most pressing topic for us is the common parts of the detector interface that needs to be shared among all detector FEEs. This includes the timing system (IpGBT disadvantages outweigh advantages), the data interface, and the configuration interface. This is a pressing item because a shared scheme needs to be available before final FEE design can be completed. It's also a complex task that will need detailed analysis of the detector needs to be properly evaluated.

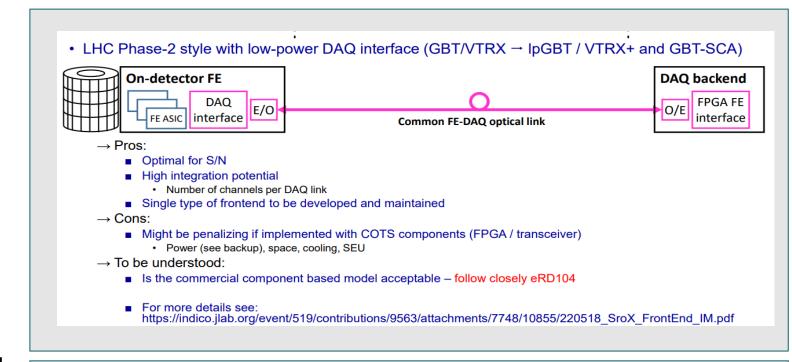
Detector 1 EPIC Streaming DAQ

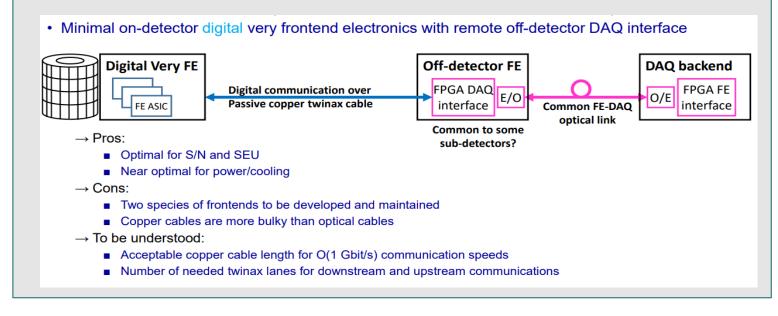

DAQ as part of overall Computing: Online to Offline Stream

(from: David Lawrence – ECCE Computing Model – Streaming Readout Workshop IX)

Streaming DAQ Architecture

- > Wide acceptance in the community for a streaming DAQ scheme. This included the YR reference detector & all three EIC proposals
- No External trigger
- All collision data digitized but aggressively zero suppressed at FEE
- Low / zero deadtime
- Event selection can be based upon full data from all detectors (in real time, or later)
- Collision data flow is independent and unidirectional -> no global latency requirements
- Avoiding hardware trigger avoids complex custom hardware and firmware
- > Data volume is reduced as much as possible at each stage
- ➤ The "Front End Processing", programmable hardware between the FEEs and the DAQ computers, is deemphasized relative to the yellow report, but should not be precluded.

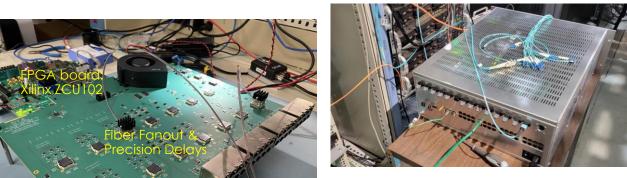

FEE Organization

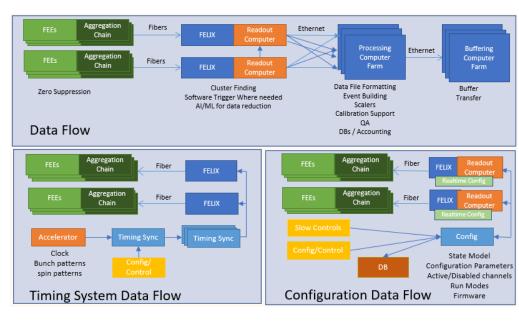

The FEE organization will contribute to the selection of the components:

One of the first decisions we made is whether we need the IpGBT

For EIC the main advantage of lpGBT would be the low power use (<1/4 of FPGA solutions), and low-jitter recovered clock distribution

Disadvantages outweigh the advantages for us, and include the 40MHz clock, and procurement/support





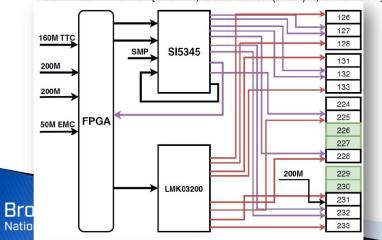
Timing System: Synchronization and Fast Control

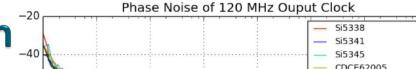
- Need fast control system (for control/feedback/sync) that is O(10ns) level
 - Distinct from slow/detector controls, routes with fixed timing constraints
- Fast Control Topics:
 - Beam crossing counter
 - Precision timing distribution (e.g., TOF O(10-20ps))
 - Synchronization and fast control
 - Busy feedback and flow control; potential triggers
 - Accelerator Interface: Spin states, luminosity, polarization, etc.
 - FEE clock counters resets

- Synchronization: Some multiple of beam clock (98.5MHz)
 - e.g., 8 Gbps can transmit 8 bytes per beam clock
- ☐ Maintain master non-reverting BX counter
 - e.g., 64bits never rolls over in lifetime of EIC (6k years)
- ☐ Transmit section of BX counter (20-40bits) to DAM & FEE to embed directly into hit data
 - Strawman: sPHENIX "Global Timing Module" (GTM)

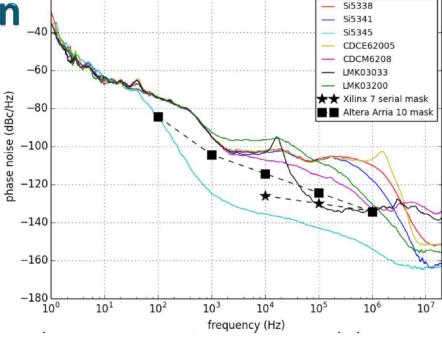
e.g. sPHENIX GTM: embedding 12 bytes at 6 times 9.4 MHz beam clock

clock count		0	1	2	3	4	5
bits 0-7	mode bits/BCO	mode bits	BCO bits 0-7	BCO bits 8-15	BCO bits 16-23	BCO bits 24-31	BCO bits 32-39
bit 8	beam clock	1	0	0	0	0	0
bit 9	LVL1 accept	X	0	0	0	0	0
bit 10	endat0	X	X	X	X	X	X
bit 11	endat1	X	X	X	X	X	X
bit 12	modebit en.	1	0	0	0	0	0
bits 13-15		3 user bits	0	1	2	3	4




Dedicated Clock Distribution (as demonstrated in FELIX)

Clock distribution precision

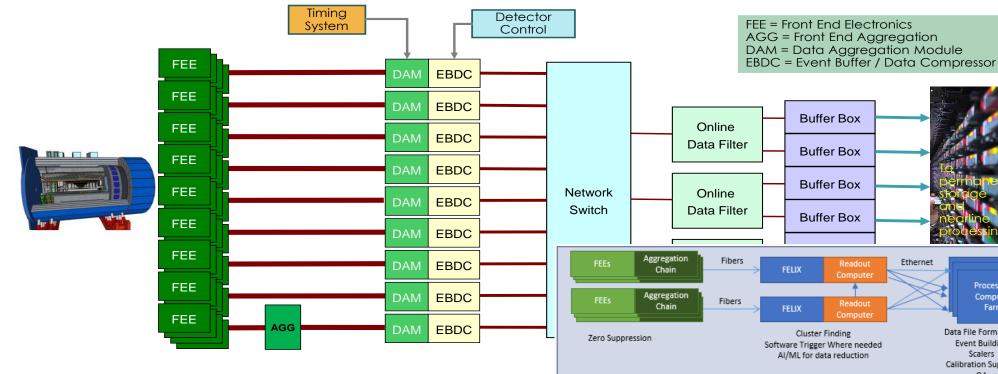

- FELIX is designed with clock jitter to provide stable clock to FEE
- Precise enough for robust transceiver lock, ps-level at 10kHz-1MHz in current part selection
- Caveat is sync over many FELIX's clock over many detector components and all frequency ranges, e.g AC-LGAD TOF and beam line detector.
 - Contribute to the uncertainty of TOF measurement, 20-30 ps total uncertainty
 - Therefore, ToF should consider a dedicated precision clock distribution, monitoring and calibration

FELIX v712 clock tree [K. Chen, IEEE TIM. 69 (2019) 7, 4569-4577]

[K. Chen, ATLAS Phase-I FELIX Design Review]

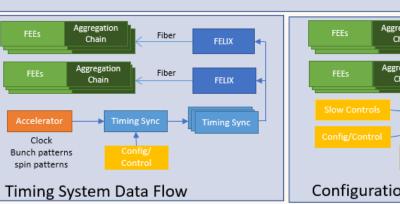
9		37	57
Device	SI5338	SI5345	SI5341
Jitter (ps)	8.58	0.09	6.39
Device	CDCM6208	LMK03200	LMK03033
Jitter (ps)	2.06	5.91	2.74
Device	CDCE62005		
Jitter (ps)	8.61		

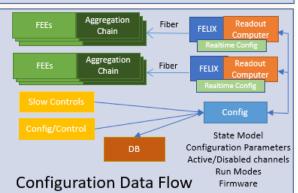
The jitter from 10 kHz to 1 MHz


Jin Huang <i ihuang@bnl.gov>

Streaming Readout workshop X

17




Detector "Slow" Control System

Configuration is critical

- All detectors need potentially complex configuration.
- Need real time control for providing features like periodic raw data for checking bias due to aggressive compression &/or AI/ML)
- Need to monitor, and potentially adjust configuration in real time (pedestal drifts/hot channels/tracking failing electronics)
- Automated power cycle / configuration recovery
- AI/ML control of HV settings (to control gains, timing windows, phase shifts)

Data File Formatting

Event Building

Scalers

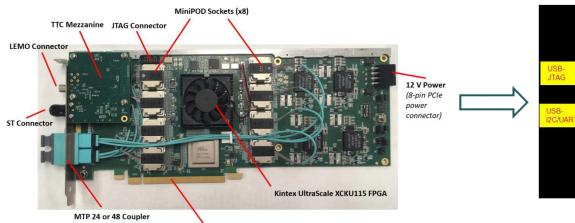
Calibration Support

DBs / Accounting

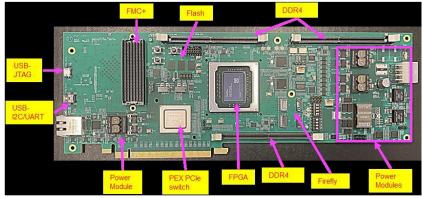
Buffering

Farm

Buffer

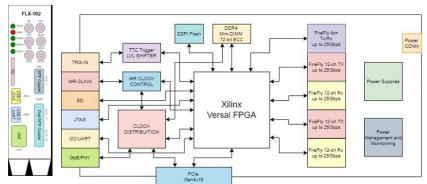

Transfer

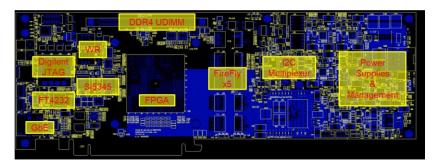
Ethernet


Ethernet

Data Flow

DAM Candidate: ATLAS "FELIX"


FELIX FLX-181 Prototype (BNL)



Assembled 24ch FLX-181 with 25 Gbps FireFly FMC+

(Hao Xu, BNL, DAQ WG meeting 7/21)

Current Design of FELIX FLX-182

FELIX Status

FLX-182 Status

- Design passed FELIX review, will be sent out for fabrication in this week
- First assembled board is expected to be delivered in early September 2022
- 7 boards will be produced if there's no big design issues, by December 2022
- Small production for more boards is possible once FPGA is available

Plan for 48-ch FELIX

- FPGA: Versal Premium, e.g. VP1552
- Transceivers: Up to 100+ GTYP/GTM
- PCle Gen 5 up to 16 lanes
- If FPGA is available as planned, design will start in Q1 of 2023, first board is expected to be available in Q3 2023.

Architecture and Interfaces

- PCle Gen 4 x 16 lanes
- Transceiver
 - Transceiver Type: Samtec FireFly transceiver
 - o Transceiver Speed: up to 10 Gb/s ("CERN-B") or 25 Gb/s
- Number of Optical Connectors per Card
 - At least 24 bi-directional connections to front-end electronics
 - A separate bi-directional connection to the TTC/BUSY system
- Configuration
 - o Boot from JTAG/QSPI/SD card
 - o Remote FPGA configuration from Multiple Flash Partitions
- DDR4/Flash Memory/SD card
- I2C
- External Electrical Interface
- Voltage Protection
- Temperature Protection

Scale of System

ECCE

Detector system	DAM boards	Channel/Fiber Count			
Barrel					
Si Tracker	4	100 fibers			
	_				
uRWell	12	278,000 channels, 576 fibers			
AC-LGAD TOF	30	1400 fibers			
hpDIRC	5	200 fibers			
BECAL	2	9,088 channels , 72 fibers			
iHCAL + oHCAL	1	3,264 channels, 26 fibers			
Fo	rward				
AC-LGAD TOF	6	300 fibers			
dRICH	5	220 fibers			
FEMC	8	47,850 channels, 375 fibers			
LFHCAL	10	58,590 channels, 460 fibers			
Backwards					
mRICH	7	288 fibers			
AC-LGAD TOF	3	150 fibers			
EEMC	1	2878 channels, 24 fibers			
2 20.0 61441616) 27 110 616					
Far-l	Forward				
B0 Detector,					
Roman Pots, Off-Momentum Detectors,	26	7.4M			
ZDC					
Far-Backward					
Luminosity Monitor & Low-Q ² Tagger	18	4.9M			
Sum	138				

ATHENA

Detector	Number of Channels	Detector Readout Technologies
DIRC	100k	MCP-PMT
DRICH	300k	SiPM *
ERICH	225k	SiPM *
EcalBarrelScFi	4000	SiPM using FPGA based readout boards derived from the STAR DET-ADC board
EcalEndcapN	3080	SiPM
EcalEndcapP	26600	SiPM
EcallmgBarrel	619M	MAPS*
HcalEndcapN	10000	SiPM
HcalEndcapP	2375	SiPM
HcalBarrel	26600	SiPM
Inner Vertex Tracker	60B	MAPS*
MPGDTrackerBarrel	66k	Micromegas
urWELLTrackerEndcap	50k	uRWELL
GEMTrackerEndcap	28k	GEM
B0Silicon [[2]@] [3]@	400M	MAPS*
B0preshower	260k	AC-LGAD readout with ALTIROC ASIC
RP	550k	AC-LGAD readout with ALTIROC ASIC
OffM	320k	AC-LGAD readout with ALTIROC ASIC
ffiZDCSi	213k	Silicon strip detectors - DC-LGADs
ffiSDCSciFi	576	PMTs
ZDCSiPb	500k	If silicon used, less if silicon fibers used.
ZDCScint	36-72	PMTs; depends on whether two sections are read-out indepdenently.
TOF	332k	AC-LGAD
Luminosity monitoring and Low Q tagging	4000	6 PMT based calorimeters *

Reconciliation is in progress (see backup slides)
But roughly:

- 4.5k Fibers,
- 2.5M channels +
 12k MAPS sensors
 (72B MAPS pixels)
- 120-140 Felix Boards

Huge number of channels but (relative to CERN) small total data throughput.

The number of fibers are set by detector and electronics topology and position, not data throughput.

Noise reduction is key! One hit/bunch crossing could require 5% of full data bandwidth!

ASICs R&D

ASIC Proposed	Detector	Institution(s)	R & D
ALCOR	RICH	INFN	Current version for low rate. Increase data throughput. Test streaming mode
ASTROPIX	Imaging Barrel eCAL	ANL in collaboration with NASA	Customization for Imaging calorimeter, improved power and energy resolution
ALPIDE ITS3	Si Tracker	EIC R&D Silicon Consortium in collaboration with CERN	65nm technology ITS3, lower material budget
SALSA	MPGD	CEA SACLAY in collaboration with University of Sao Paulo	Update version of SAMPA for better performance and better support for streaming
ALTIROC	TOF	Omega / CEA SACLAY / CNRS	Customization for EIC / AC-LGAD streaming
HDSOC64	DIRC, ZDC	NALU	64 channels version of HDSOC
HGCROC	Calo's	Omega Microelectronics	40MHz -> 50MHz? Streaming?
MAROC 3A	RICH	WeeRoc / CAEN / Omega	Long conversion time (102 us), 12-bit @ 40 MHz

Advanced prototype for TDR - start production around 2026 and ASIC choice will be frozen at that date All ASICs are based on existing design: development of new chip mostly for improved data links for better rate capability and streaming support making the R&D fairly low risk,

SALSA is a new iteration of SAMPA with higher channel density / higher sampling rate / lower power consumption Other ASICs will be chosen in conjunction with project from available ASICs for better standardization

- > ~July 2022 capture all major updates and initiate any needed R&D initiatives.
- > ~May 2023 finalize input into P6.

Some Comments on the ASICs mentioned...

- MAROC will likely not be used with the (slow) ADC method, but only hit info. ALCOR is favored over MAROC...
- ASTROPIX and HGCROC are designed for 40MHz, how to use them with 100MHz is still being discussed...
- HDSOC could work almost everywhere for calorimeters, but maybe FADC would be better suited for streaming (e.g., FADC chips from ALPHACORE or Pacific Microchip)...

Backup

Summary of Proposed Data Reduction Techniques

□ Timing windows with respect to the collision time (FEE)
□ Zero Suppression (FEE)
☐ Elimination of hits not part of tracks (AI/ML tracking in FEP, or any point later)
☐ Elimination of hits not part of Cherenkov rings (AI/ML in FEP, DAM, or EBDC)
□ Feature Extraction (FEE, or any point later)
☐ Cluster Finding (DAM, or any point later)
☐ Software Trigger (DAM, or EBDC)
□ Lossless compression (EBDC or later)
We should also investigate features to keep the data clean in order to improve the above techniques
Automated thresholds (ex. pedestals)
Automated filters for common mode noise suppression
Dynamic control of calibrations in slow controls &/or FEEs
□ Dynamic monitoring / removal of aberrant channels
□ Automated recovery of single bit upsets

Tracking Detector Specific Requirements	Spec	DAM Boards
Tracking	7 m^2 MAPS ITS-2 & ITS-3 sensors	
3 layers silicon for vertex	ITS-3 curved silicon	
2 layers silicon for sagitta	ITS-2 type staves but ITS-3 improvements	
4 layers silicon disks backward		
5 layers silicon disks forward		
3 layers of MPGD		
MAPS	5GB/sec total throughput	
	71B pixels	
	12k MAPS sensors	
	~300 data fibers	6
MPGD		
	100k channels	
	<10Gb/sec total zero-suppressed data volume	
	Assume 512 channels per FEE (with 8 ASICs)	
	200 FEEs / data fibers	4
	10Gb/sec -> .05Gb/sec per fiber	
	Iraqli estimate -> 1.9Gb/sec per fiber	
Use Reconstructed clocks to avoid fiber proliferation		

Calorimeters Specific Requirements	Spec	DAM Boards
Forward ECAL (PbWO (+SiGlass))	3000 channels	
Backward ECAL	3000 channels	
Barrel ECAL	8000 channels	
Imaging Barrel ECAL (If used)	10,000 Pb/SciFi	
	50M channels Astropix "2 level data aggregation inside detector, 1 data link per stave Count of Staves?	
Barrel HCAL (ECCE version)	3,000 channels	
(Athena version)	26,600 channels (off detector electronics)	
Forward pECAL (Athena Version)	25,000 channels (off detector electronics)	
Forward FHCAL (Ecce Style)	60,000 channels	
High granularity HCAL inset	8k channel	
Except for the Imaging barrel all SiPM	~110k channels	
	Assume 64 channels / FEE -> 1600 fibers	34
Backward HCAL uncertain.		
Use Reconstructed Clock to reduce fiber		

Far Forward Specific Requirements	Spec	DAM Boards
ВО		
3 MAPS layers	300M Pixel (3x20x20cm @ 20x20 um pitch. ~300 sensor)	
1 AC-LGAD	150k (500x500um pitch assumed)	
2 RP and 2 OffM		
4 x 500k AC-LGAD layers	8M total channels	
ZDC		
Crystal	400 channels APD	
32 x 2600 ch silicon pad	11,520 HGCROC as per ALICE FoCal-E pad layers	
4 x 40,000ch silicon pixel	160k	
2 boxes scintillator	72	

Far Backward Specific Requirements	Spec	DAM Boards
Low-Q tagger 1: 2 layers of (40x40cm) (500umx500um pitch)	1.3M	
Low-Q Tagger 2: 2 layers of (30cmx20cm) (500umx500um pitch)	480k	
(or smaller)		
2 Calorimeters	700 Channels total	

Cherenkov PID Specific Requirements	Spec	DAM Boards
dRICH	300k channels	
	Max dark current rate 1830 Gb/sec	
	40Gb/sec fiber	
	Dedicated Timing fiber for timing window application	
	~310 fiber (assuming 64 channel FEB + 16 FEB x ROB) and 6.5Gb/sec fiber	~24
pfRICH (if used) (assume 75% of dRICH)	225k	
mRICH	Ś	
DIRC	100k channels	

TOF Specific Requirements	Spec	DAM Boards
Channels		
Depends on strip size (.5mm x 1cm or .5mm x .3cm) and/or pixel size (.5mm x .5mm)	3-50M channels	
fibers	240 - 500	5 – 10
Rate per fiber	.5Gb/sec - 5 Gb/sec	
Rates to tap	4-6 Gb/sec	
Dedicated fiber for high resolution clock		

