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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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• Classification 
• Machine Learning and Optimality 
• HEP images  
• Other architectures for HEP 

• Regression, Generative Models / likelihood-free 
approaches, Anomaly Detection
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Threshold depends 
on natural relative 

abundance

You may be 
tempted to place 
a threshold on x

Let’s consider an important special case: 
binary classification in 1D 
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Is the simple threshold 
cut optimal?
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Fact 1: The classifier that results in the lowest FPR 
for a given TPR is a cut on the likelihood ratio (LR).

LR(x) > c, LR(x) = p(x|signal) / p(x|background)

TPR = true positive rate or 
“signal efficiency”

FPR = false positive rate or 
1 - “background rejection”

10Machine learning and optimality

See Neyman-Pearson lemma
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Fact 2: Two classifiers that are related by a monotonic 
transformation result in the same performance.

Fact 1: The classifier that results in the lowest FPR 
for a given TPR is a cut on the likelihood ratio (LR).

TPR = true positive rate or 
“signal efficiency”

FPR = false positive rate or 
1 - “background rejection”
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In this simple case, the log 
LR is proportional to x:  

no need for non-linearities!
Threshold cut is optimal
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What if the distribution of x is complicated?
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Now what is the 
optimal classifier?

Real life is complicated!
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Why don’t we always just 
compute the optimal classifier?

In the last slides, we had to estimate the 
likelihood ratio - this required binning the PDF

binning works in 1D, but intractable as feature 
dimension >> 1 (“curse of dimensionality”)

machine learning for classification is simply 
the art of estimating the likelihood ratio 

with limited training examples

17Tools for Classification



= tools for likelihood ratio estimation• “Histograming”  
• Nearest Neighbors 
• Support Vector Machines (SVM) 
• (Boosted) Decision Trees 
• (Deep) Neural Networks 
• …

Software: TMVA, scikit-learn, XGBoost, tensorflow, pytorch…

Data formats: .root, .npy, .hdf5 

does “everything” except DNNs

has most things and ROOT-compatible but the 
community base is much smaller than the other ones

Not widely used; only 
useful if decision 

boundary is ‘simple’

18HEP Tools for (Classical) Classification



Full Likelihood (Jet Mass+Jet Charge+b-tagging)
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If you have a 1D 
problem, look no further!

If your problem can be 
decomposed into a 
product/sum of 1D 

problems…look no further!

If these do not apply…
look elsewhere.

19Histogramming

Z → hadrons 
versus 

W → hadrons
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In 2D, a nice extension of histogramming is to estimate the 
likelihood ratio based on the number of S and B points nearby.

ATLAS-CONF-2014-018

20Nearest Neighbors

Jets from extra pp 
collisions (pileup) versus 

the hard-scatter jets



A decision tree is a partition of the feature space.  
One tree is a set of binary “cuts”.  

Boosting makes an ensemble classifier.  For 
example, a community favorite AdaBoost, applies 

weights to the misclassified events.

N.B. BDTs are not differentiable 

21Boosted Decision Trees (BDTs)

XGBoost is becoming more the de facto standard.  
Actually, this method was popularized because of 

the Higgs Kaggle Challenge!

http://proceedings.mlr.press/v42/chen14.pdf
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We love 
BDTs.

If 3 < dim(feature 
vector) < O(10) 

this is probably 
right for you!
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We love BDTs because they are fast to train, are close 
to “cuts”, and do not have very many parameters.  

They are also rather robust to overtraining.

23Boosted Decision Trees (BDTs)

W → hadrons versus 
q/g → hadrons
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There is really not a good reason to use a 
(D)NN with << O(100) dimensions.  

However, they 
are becoming 
increasingly 

easy to train …

Boosted Decision Trees (BDTs) 24Boosted Decision Trees (BDTs)

top quark → hadrons 
versus q/g → hadrons



25Neural Networks

Phys. Rev. Lett. 65 (1990) 1321

Neural Networks were popular at LEP and then mostly 
fell out of favor until the deep learning revolution.



Neural Networks were popular at LEP and then mostly 
fell out of favor until the deep learning revolution.

26Neural Networks

The NN’s of the 90s are rather different than those of 
today!  With advanced in hardware (GPUs), 

architectures (dropout, ReLU), etc. the DNNs of today 
are qualitatively different and more powerful.



27What is a Neural Network learning?

loss( f(x)) = − ∑i∈S log f(xi) − ∑i∈B log(1 − f(xi))

Consider the popular binary cross entropy:



28What is a Neural Network learning?

loss( f(x)) = − ∑i∈S log f(xi) − ∑i∈B log(1 − f(xi))

Consider the popular binary cross entropy:

If f is optimal, what will it learn?

One can show that asymptotically, 

f(x) ≈ Pr(S |X = x)

(this is monotonic with the likelihood ratio)
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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3
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]
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where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
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of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]

�3 =

�
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1

�2�
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� (2)
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, (3.1)

where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
The numbers 1 and 2 label different color lines.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
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full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure
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the images that low —3 values (background-like) pick out subjets with a broader radiation
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indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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Figure 4. The expected significance as a function of the integrated luminosity for the analysis with
and without machine learning. The vertical red dashed line corresponds to the dataset size from the
current CMS result [19] while the purple and blue dashed lines indicate the sizes required to reach 3‡
with and without machine learning, respectively. The full Run 2 (2015–2018) dataset will be about
150 fb≠1 and the full LHC dataset (up to 2023), prior to the HL-LHC, will be about 300 fb≠1.

with the application of the neural network, evidence may be achievable with the full Run 2
(2015–2018) dataset (about 150 fb≠1) and observation may be possible well before the end of
the LHC. This represents one of the main results of this paper, and emphasizes the possible
gains to be had with ML.

3.3 What is the Neural Network Learning?

With a significant improvement from the neural network, it is interesting to investigate in
more detail what information the machine is exploiting beyond the existing search. This
section follows some of the procedures for such a study described in Ref. [50].

First, Fig. 5 shows the (first layer) convolutional filters from both streams of the network.
Since both streams are actually three-channel images, there are three sets of filters for each
case. While it is di�cult to immediately recognize what the network is learning from these
filters, there are some hints upon careful inspection. In particular, the event images have
a small number of “hot spots.” This may indicate that the network is learning to compute
distances between prongs within jets and between jets. In contrast, the jet image filters have
many active pixels with complex shapes. These filters are too small to span the typical subjet
distance and so may be identifying the pattern of radiation between or around subjets. The
following sections examine the two streams of the network in more detail.
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HEP data as an image



is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

38More HEP images
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Many topologies: 
top quarks, W/Z/H 

bosons, BSM 
particles, q/g, etc.

Multi-channel: 
use calorimeter 

& tracking 
information to 

make RGB 
image.

Hyperparameter 
choices matter!L. De Oliveira et al., JHEP 07 (2016) 069
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39More HEP images
M. Andrews et al., https://arxiv.org/abs/1902.08276

A. Aurisano, et al., JINST 11 )2016) P09001

Studies at LHC 
and Neutrino 

experiments for 
fully “end to end”



40A last word about CNNs for now

CMS Collaboration, JINST 15 (2020) P06005

One can use CNNs as automated “feature 
extractors” even if the inputs are not images.

100 particles, 42 features per particle

This is the structure of the CMS 
Collaboration Deep AK8 jet classifier.
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42Deep neural networks for HEP classification
See 1709.04464 for image refs.



43Sequence learning

One key challenge with images is that they have a fixed size. 

In many contexts, this is ideal, because the data also 
have a fixed size.  However, this is not always the case.

For example, events / jets have a variable number of particles.

One can represent these particles as a sequence 
in order to apply variable-length approaches that 

can access the full feature granularity.



44Sequence learning with RNNs
Flavor tagging (classify jets from b-quark or 

not) has a long history of ML.  Use features of 
the charged-particle tracks inside jets.

In the past, challenging to 
incorporate correlations 

between tracks. 



45Sequence learning with RNNs
Flavor tagging (classify jets from b-quark or 

not) has a long history of ML.  Use features of 
the charged-particle tracks inside jets.

In the past, challenging to 
incorporate correlations 

between tracks. 

Possible with 
RNNs!

ATL-PHYS-PUB-2017-003
See also D. Guest et al., PRD 94 (2016) 112002



46Hybrid methods

better

CMS-DP-2017-013

RNN + 1x1 CNNs 
for dimensionality 

reduction.  

This reduction 
improved the 

performance of the  
overall classifier.
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47Deep neural networks for HEP classification
See 1709.04464 for image refs.
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48Deep neural networks for HEP classification
See 1709.04464 for image refs.



49Learning with sets

A challenge with sequence learning is that thanks to 
quantum mechanics, there is often no unique order.

A common scenario is that we have a variable-length SET 
of particles and we would like to learn from them directly.

Solution: set learning / point cloud approaches



50Solution 1: Deep sets / Particle flow Networks

M. Zaheer et al. https://arxiv.org/abs/1703.06114; P. Komiske, E. Metodiev, & J. Thaler, JHEP 01 (2019) 121

f({x1, . . . , xM}) = F (
M

∑
i=1

Φ(xi))

Factorize the problem into two networks: one that embeds 
the set into a fixed-length latent space and one that acts on 

a permutation invariant operation on that latent space:
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length set and the order of the inputs doesn’t matter.
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• Can readily incorporate 
per-particle features

• Can be made infrared and 
collinear safe (EFN) safe
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Latent space in IRC safe case is interpretable (and predictable!)
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better Faster to train than 
RNN so can do R&D 
on input features to 

improve overall 
performance.
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55Solution 2: Graph methods

Classic CNNs operate on a fixed grid and are 
not invariant under the permutation of points

Can generalize CNNs to act on graphs 

e.g. Y. Wang et al. https://arxiv.org/abs/1801.07829 and H. Qu and L. Gouskos, PRD 101 (2020) 056019

Need to define distances using particle properties

https://arxiv.org/abs/1801.07829
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Need to define distances using particle properties

CMS DP-2020/002

Competitive 
performance to 

other state-of-the-
art methods
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57Deep neural networks for HEP classification
See 1709.04464 for image refs.
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Classification

RegressionGeneration

arbitrarily 
many 

categories

map noise 
to structure

provide 
examples 
for training

Beyond Classification

+related topics like anomaly detection, simulation-based inference, …
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60Introduction: generative models

A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.



61Tools

GANs
Generative Adversarial Networks

NFs
Normalizing Flows

VAEs
Variational Autoencoders

Deep generative models: the map is a deep neural network.



62Introduction: GANs
Generative Adversarial Networks (GANs):  
A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data
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Variational Autoencoders (VAEs):  
A pair of networks that embed the data into a latent space 
with a given prior and decode back to the data space.

Introduction: VAEs

Physics-based 
simulator or data

DE

latent space

p(z|x) p(x|z)

Probabilistic 
encoder

Probabilistic 
decoder



64Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)



2

FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

65Generative Models for Particle/Nuclear/AstroFigure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 042003
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 042003
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future
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68Accelerating Detector Simulations
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One image per 

calo layer
One network per particle type; 

input particle energy
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Pions deposit much less energy in 

the first layers; leave the calorimeter 
with significant energy  
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72Conditioning

Figure 4. Interpolation across physical range of x0 as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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Fix noise, scan latent variable corresponding to energy

Fix noise, scan latent variable corresponding to x-position

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

M. Paganini, L. de Oliveira, B. Nachman, 1711.08813
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Generation Method Hardware Batch Size milliseconds/shower

GEANT4 CPU N/A 1772

1 13.1

10 5.11

128 2.19
CPU

1024 2.03

1 14.5

4 3.68

128 0.021

512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under

various algorithm-hardware combinations.

21

NVIDIA K80

Intel Xeon 
E5-2670

(clearly these numbers have changed as both technologies have 
improved - this is simply meant to be qualitative & motivating!)

M. Paganini, L. de Oliveira, B. Nachman, PRL 120 (2018) 042003, 1705.02355
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many other papers - see Living Review, 2102.02770

C. Krause and D. Shih, 2106.05285

Figure 13. Distributions that are sensitive to Flow I for ⇡
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.

– 22 –

Generative models have gotten much better; flow models are 
particularly promising.  Added bonus: have an explicit density.
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Figure 13. Distributions that are sensitive to Flow I for ⇡
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.

– 22 –

Generative models have gotten much better; flow models are 
particularly promising.  Added bonus: have an explicit density.

classifier gives AUC= 0.5, whereas a perfect classifier gives AUC= 1.0. The second metric,

JSD, is the Jensen-Shannon divergence between the two distributions, which we deduce from

the binary cross entropy of the test set at the minimum [85, 86]. The JSD is 0 if the two

distributions are identical and 1 if they are disjoint. In all these tests we see that a classifier

can distinguish Geant4 and CaloGAN samples with 100% accuracy, whereas it has a much

harder time to distinguish between Geant4 and CaloFlow, indicating that CaloFlow

produced a more realistic dataset. We think that this is in part due to CaloGAN not

sampling the full space, as can be seen from average layer depositions that show voxels with

0 value, as well as centroid correlations that peak o↵-center. All these features act as “tells”

for the classifier.

In addition to these results, we investigated the influence of working in logit space by

transforming voxel values using (4.2) and then dividing it by 10 before feeding it into the

classifiers. As this preprocessing step artificially enhances features of dim voxels that likely

do not contribute much to the physics analysis, we do not think that these results neces-

sarily reflect physically meaningful di↵erences between the CaloFlow (or CaloGAN) and

Geant4 datasets. For completeness, we report the results of the classifiers with data in logit

space in table 5 in appendix B. We also checked if applying a threshold cut of 10 keV to

Geant4 and CaloGAN data (the same as in the last step of generating CaloFlow data)

has an influence and we found none.

Table 3. AUC and JSD metrics for the classification of Geant4 vs CaloGAN and CaloFlow

showers. Classifiers were trained on each particle type (e+, �, ⇡
+) separately. The results of two

classifiers based on DNN and CNN architectures are shown; for details on the classifier architectures
and training, see appendix A. All entries show mean and standard deviation of 10 runs and are rounded
to 3 digits. We see that the classifiers can distinguish Geant4 from CaloGAN showers with nearly
perfect accuracy in all cases, whereas Geant4 vs. CaloFlow showers are much more di�cult for the
classifiers to tell apart.

AUC / JSD
DNN CNN

vs. CaloGAN vs. CaloFlow vs. CaloGAN vs. CaloFlow

e
+

unnormalized 1.000(0) / 0.993(1) 0.847(8) / 0.345(12) 0.952(6) / 0.613(19) 0.504(2) / 0.002(1)

normalized 1.000(0) / 0.997(0) 0.869(2) / 0.376(4) 1.000(0) / 0.979(1) 0.736(92) / 0.168(134)

�

unnormalized 1.000(0) / 0.996(1) 0.660(6) / 0.067(4) 0.975(5) / 0.712(31) 0.516(1) / 0.002(1)

normalized 1.000(0) / 0.994(1) 0.794(4) / 0.213(7) 1.000(0) / 0.989(1) 0.678(50) / 0.082(57)

⇡
+

unnormalized 1.000(0) / 0.988(1) 0.632(2) / 0.048(1) 0.970(18) / 0.714(119) 0.517(2) / 0.001(0)

normalized 1.000(0) / 0.997(0) 0.751(4) / 0.148(4) 1.000(0) / 0.997(1) 0.864(7) / 0.340(16)

– 31 –

Output is nearly 
indistinguishable 

from Geant4 ! 
AUC = 1 means easily 

distinguishable, AUC = 0.5 
means not distinguishable

many other papers - see Living Review, 2102.02770



76Integration into real detector sim.
ATLAS Collaboration, 2109.02551

FastCalo
Sim V2Geant4

FastCaloSimv2

FastCalo
GAN

Geant4

Inner 
Detector Calorimeters Muon 

Spectrometer

Muons

Electrons 
Photons

Hadrons
FastCalo
Sim V2

Muon 
Punchthrough 

+Geant4

Geant4

Ekin < (8−16) GeV Ekin > (256 − 512) GeV(8−16) GeV < Ekin

Geant4
Ekin < 200 MeV

Ekin < 400 MeV
Other hadrons:

pions:

< (256 − 512) GeV

The ATLAS Collaboration fast simulation (AF3) now 
includes a GAN at intermediate energies for pions



77Integration into real detector sim.
ATLAS Collaboration, 2109.02551

0 1 2 3 4 5

|η|

0.9
1

1.1
1.2
1.3
1.4

R
M

S 
FG

AN
/G

4 0 1 2 3 4 5
|η|

0.94

0.96

0.98

1

1.02

1.04

<E
> 

FG
AN

/G
4 0 1 2 3 4 5

|η|

35

40

45

50

55

60

65

70

<E
> 

an
d 

R
M

S 
[G

eV
]

ATLAS Simulation
  E=65.5 GeV±π

G4

FastCaloGAN

G4

FastCaloGAN

The GAN architecture 
is relatively simple, 

but it is able to match 
the energy scale and 

resolution well.

There is one GAN 
per η slice



78Integration into real detector sim.
ATLAS Collaboration, 2109.02551

Leading-Jet Number of Constituents

0.05

0.1

0.15

0.2

0.25

U
ni

t N
or

m
al

iz
ed

G4
AF2
AF3

4q→WZ→=13 TeV, W'(13 TeV)s
ATLASATLAS�Simulation 

4q→WZ→=13 TeV, W'(13 TeV)s
>20 GeV, EMPFlow R=0.4 jets

T
Jet p

0 10 20 30 40 50 60 70
Leading-Jet Number of Constituents

0.6
0.8

1
1.2
1.4

AF
/G

4

Leading-Jet Mass [GeV]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

U
ni

t N
or

m
al

iz
ed

G4
AF2
AF3

tt→=13 TeV, Z'(4 TeV)s
ATLASATLAS�Simulation 

tt→=13 TeV, Z'(4 TeV)s
>200 GeV, UFO R=1.0 jets

T
Jet p

0 50 100 150 200 250 300 350 400
Leading-Jet Mass [GeV]

0.8
1

1.2

AF
/G

4

The new fast simulation 
(AF3) significantly improves 
jet substructure with respect 

to the older one (AF2)

Ideally, the same 
calibrations derived for full 

sim. (Geant4-based) can be 
applied to the fast sim.



79Integration into real detector sim.
ATLAS Collaboration, 2109.02551

10 210
Energy [GeV]

210

310

410

Av
er

ag
e 

C
PU

 ti
m

e 
/ E

ve
nt

 [m
s]

G4
AF3
AF2

ATLAS Simulation 
| < 0.25η , 0.20 < |γ = 13 TeV, s As expected, the 

fast sim. timing is 
independent of 
energy, while 

Geant4 requires 
more time for 
higher energy.



80Refining Simulations

As we move towards precision, we may need to 
complement primary generative models with post-hoc 

correction models (e.g. via reweighting)

S. Diefenbacher et al., 2009.03796

See also 2106.00792 (“LaSeR”) and 2107.08648 (optimal transport-based)
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FIG. 2: The weights of the low-level and high-level Dctr
models. The top plot presents histograms of the weights and
the bottom plot presents a scatter plot demonstrating the cor-
relation between the weights of the two models. The Pearson
correlation (⇢) is indicated in the plot.

tween 1-10 while the Gan is many ten-thousand times
faster than Geant4 [39].

Three composite observables are presented in Fig. 3.
The total number of activated cells is more peaked
around 780 in Geant4 than the Gan and both the low-
level and high-level models are able to significantly im-
prove the agreement with Geant4. The value of hS2i
is about 20 times smaller than the unweighted Gan for
the high-level Dctr model and about 5 times smaller for
the low-level model. The statistical dilution is modest for
the low-level model with r = 1.2 while it is 3.6 for the
high-level model. The modeling of the total energy is
also improved through the reweighting, where both the
low-level and high-level models shift the energy towards
lower values. The longitudinal centroid is already rela-
tively well-modeled by the Gan, but is further improved
by the high-levelDctrmodel, reducing the hS2i by more
than a factor of two.

Histograms of the energy in representative layers are
shown in Fig. 4. Generally, the Geant4 showers pen-
etrate deeper into the calorimeter than the Gan show-
ers, so the energy in the early layers is too high for the
Gan and the energy in the later layers is too low. The
Dctr models are able to correct these trends, with a sys-
tematically superior fidelity as measured by hS2i for the
high-level model.

The modeling of correlations between layers is probed

FIG. 3: Histograms of various observables from simulated
calorimeter showers of 50 GeV photons in a 5-layer calorime-
ter with 30 ⇥ 30 cells in each layer. A cell is activated if a
non-zero energy is registered in that cell. The panels below
each histogram show the ratio between the Gan or the Dctr-
Gan and the physics-based simulator Geant4. The legend
includes the separation power hS2i between the (weighted)
Gan model and the Geant4 model. Additionally, the ratio r
of the uncertainty in the mean of the observable between the
Gan and Geant4 is also presented.
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 042003
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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where Ii, ⌘i, and �i are the pixel intensity, pseudorapidity, and azimuthal angle, respectively. The
sums run over the entire image. The quantities ⌘a and �a are axis values determined with the one-pass
kt axis selection using the winner-take-all combination scheme [42].

The distributions of m(I), pT(I), and ⌧21(I) are shown in Fig. 6 for both GAN and Pythia images.
These quantities are highly non-linear, low dimensional manifolds of the 625-dimensional space in
which jet images live, so there is no guarantee that these non-trivial mappings will be preserved under
generation. However this property is desirable and easily verifiable. The GAN images reproduce many
of the jet-observable features of the Pythia images. Shapes are nearly matched, and, for example, signal
mass exhibits a peak at ⇠ 80GeV, which corresponds to the mass of the W boson that generates the
hadronic shower. This is an emergent property - nothing in the training or architecture encourages
this. Importantly, the generated GAN images are as diverse as the true Pythia images used for training
- the fake images do not simply occupy a small subspace of credible images.

Figure 6: The distributions of image mass m(I), transverse momentum pT(I), and n-subjettiness
⌧21(I). See the text for definitions.

We claim that the network is not only learning to produce samples with a diverse range of m, pT
and ⌧21, but it’s also internally learning these projections of the true data distribution and making use
of them in the discriminator. To provide evidence for this claim, we explore the relationships between
the D’s primary and auxiliary outputs, namely P (real) and P (signal), and the physical quantities that
the generated images possess, such as mass m and transverse momentum pT .

The auxiliary classifier is trained to achieve optimal performance in discriminating signal from
background images. Fig. 7 confirms its ability to correctly identify the class most generated images
belong to. Here, we can identify the response’s dependence on the kinematic variables. Notice how
D is making use of its internal representation of mass to identify signal-like images: the peak of the
m distribution for signal events is located around 80 GeV, and indeed images with mass around that
point have a higher P (signal) than the ones at very low or very high mass. Similarly, low pT images
are more likely to be classified as background, while high pT ones have a higher probability of being
categorized as signal images. This behavior is well understood from a physical standpoint and can be
easily cross-checked with the m and pT distribution for boosted W and QCD jets displayed in Fig. 6.
Although mass and transverse momentum influence the label assignment, D is only partially relying
on these quantities; there is more knowledge learned by the network that allows it, for example, to
still manage to correctly classify the majority of signal and background images regardless of their m
and pT values.

– 9 –

LA = Locally aware; somewhere between a DNN and a CNN
Weight sharing across space
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Figure 6. Number of jets per event using the anti-kt R=0.4 jet algorithm (left) and the kt R=0.6
algorithm (right).

The jet width,6 ⇢, is a test of the shape of the radiation pattern emitted around a jet,

and is shown in Figure 7 for all jets that satisfy the selection criteria. The simple CNN

models do a surprisingly good job of recreating the jet shapes of the true parton shower,

especially for the large width jets. There is a deficiency in small width jets compared to

Sherpa, and an over-abundance of zero-width jets. This suggests some kind of dead cone

e↵ect, which could be an artefact of the approximate merging procedure, or some other

e↵ect of using an angular ordered-type shower. By way of comparison, Herwig’s angular-

ordered shower also displays a similar dip in the number of low width jets and shows the

range of expected di↵erences between an angular-ordered shower and a kT ordered shower.

The CNN models have no information about parton mass, and also have a cut o↵ at small

angle due to the finite pixel size, both of which may a↵ect the small width jets to some

extent.

Jet masses arise from the finite width of the jet, and jet mass distributions also serve

as a test of the radiation emitted around a jet. The distributions of jet masses from all

selected jets are shown in figure 8. Both the k2 and k3 CNN models have generated smooth

mass distributions from the input ME partons, with gradients close to those of the target

Sherpa model in the tails. However, the peak of the mass distributions do not match the

target. This is not surprising because the CNN models do not contain any information

about mass and do not trace the parton masses through the network; jet masses arise only

from the angular width of the jets. Furthermore, the existence of massive b and c quarks

can be seen in the Sherpa mass distribution as the small spikes at around 4.5 and 1.7 GeV,

respectively. Since the CNN does not include any mass term for the partons (or pixels) it

cannot reproduce these spikes. Again, the Herwig shower is shown as an example of the

di↵erences that can be expected between angular and kT ordered showers, in particular in

6
⇢ is given by ⇢ =

P

i
�R(j,pi)piT

P

i
piT

where the sum is over all constituents of the jet, piT is the pT of the i
th

jet constituent and �R (j, pi) is the angular separation between that constituent and the jet axis.

– 17 –

Figure 7. Jet width distributions using the anti-kt R=0.4 jet algorithm (left) and the kt R=0.6
algorithm (right).

the low mass region.
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ME + CNN k2
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Figure 8. Jet mass distributions using the anti-kt R=0.4 jet algorithm (left) and the kt R=0.6
algorithm (right).

Finally, the transverse momentum (pT ) distributions of all jets that satisfy the selection

criteria are shown in Figure 9. Both of the CNN models improve the jet pT spectra relative

to the unshowered matrix element partons by increasing the proportion of high-pT jets

and flattening the bump7 in the ME distribution between 40 and 50 GeV. Model k3 is

very close to the pT spectrum of the target Sherpa parton shower for both jet algorithms.

However, model k2 is somewhat too hard, and shows a flattening of the spectrum around

80 GeV. This flattening is an artefact of the shower merging procedure and disappears if

the merging layer is removed from the CNN.

7This small bump occurs because the ME event selection requires the sub-leading jet to pass the same
pT > 40 GeV criterion as the leading jet.

– 18 –
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Figure 4: Energy (top) and transverse momentum (bottom) distributions of the final-
state b-quark (left) and the decaying top quark (right) for MC truth (blue) and the GAN
(red). The lower panels give the bin-wise ratio of MC truth to GAN distribution. For the
pT distributions we show the relative statistic uncertainty on the cumulative number of
events in the tail of the distribution for our training batch size.

easily corrected for instance by slicing the parameter in pT and train the di↵erent phase
space regions separately. Alternatively, we can train the GAN on events with a simple
re-weighting, for example in pT , but at the expense of requiring a final unweighting step.

Phase space coverage

To illustrate that the GAN populates the full phase space we can for instance look at the
azimuthal coordinates of two final-state jets in Fig. 5. Indeed, the generated events follow
the expected flat distribution and correctly match the true events.

Furthermore, we can use these otherwise not very interesting angular correlations to
illustrate how the GAN interpolates and generates events beyond the statistics of the
training data. In Fig. 6 we show the 2-dimensional correlation between the azimuthal
jet angles �j1 and �j2 . The upper-left panel includes 1 million training events, while the
following three panels show an increasing number of GANed events, starting from 1 million
events up to 50 million events. As expected, the GAN generates statistically independent
events beyond the sample size of the training data and of course covers the entire phase
space.
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Figure 7: Comparison of di↵erent kernel functions (left) and varying widths (right) and
their impact on the invariant mass of W boson (top) and top quark (bottom).

GAN setup does not reproduce the phase space structure. The crucial task of this paper
is to show how well our network reproduces the resonance structures of the intermediate
narrow resonances. In Fig. 7 we show the e↵ect of the additional MMD loss on learning
the invariant mass distributions of the intermediate W and top states. Without the MMD,
the GAN barely learns the correct mass value, in complete agreement with the findings
of Ref. [15]. Adding the MMD loss with default kernel widths of the Standard Model
decay widths drastically improves the results, and the mass distribution almost perfectly
matches the true distribution in the W -case. For the top mass and width the results are
slightly worse, because its invariant mass needs to be reconstructed from three external
particles and thus requires the generator to correlate more variables. This gets particularly
tricky in our scenario, where the W -peak reconstruction directly a↵ects the top peak. We
can further improve the results by choosing a bigger batch size as this naturally enhances
the power of the MMD loss. However, bigger batch sizes leads to longer training times
and bigger memory consumption. In order to keep the training time on responsible level,
we limited our batch size to 1024 events per batch. As already pointed out, the results are
not perfect in this scenario, especially for the top invariant mass, however, we can clearly
see the advantages of adding the MMD loss.

To check the sensitivity of the kernel width on the results, we vary it by factors of
{1/4, 4}. As can be seen in the lower panels of both distributions, increasing the resolution
of the kernel or decreasing the kernel width hardly a↵ects the network performance. On
the other hand, increasing the width decreases the resolution and leads to too broad mass
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Figure 4: Comparison of real and generated distributions for a subset of jet and particle features. We
use the best performing model for each of the FC, GraphCNN, and MP generators, as per Table 2.
Top: gluon jet features, Middle: top quark jet, Bottom: lighter quark jets.

Architecture discussion. To disentangle the effectiveness of the MP generator and discriminator,
we train each individually with alternative counterparts (Table 2). With the same PointNet discrimi-
nator, the GraphCNN generator performs worse than the simple FC generator for every metric on
all three datasets. The physics-motivated MP generator on the other hand outperforms both on the
gluon and top quark datasets, and significantly so on the jet-level W1 scores and the FPND. We note,
however, that the MP generator is not a significant improvement over FC or GraphCNN with an FC
discriminator. Holding the generator fixed, the PointNet discriminator performs significantly better
over the FC for all metrics. With the FC and GraphCNN generators, PointNet is also an improvement
over the MP discriminator. With an MP generator, the MP discrimimator is more performant on
jet-level W1 and FPND scores but, on the gluon and top quark datasets, degrades WP

1 relative to
PointNet.

We learn from these three things: (1) a generator or discriminator architecture is only as effective
as its counterpart — even though the MPGAN combination is the best overall, when paired with a
network which is not able to learn complex substructure, or which breaks the permutation symmetry,
neither the generator or discriminator is performant, (2) for high-fidelity jet feature reconstruction,
both networks must be able to learn complex multi-particle correlations — however, this can come at
the cost of low-level feature accuracy, and (3) MPGAN’s masking strategy is highly effective as both
MP networks are improvements all around on light quark jets.

Particle cloud evaluation metrics. Each metric proposed here has unique merit. We see that
models with low W1 scores relative to the baseline have the best coverage and MMD scores as well.
This indicates that the W1 metrics are sensitive to both mode collapse (measured by coverage) — this
is expected as, in terms of feature distributions, mode collapse manifests as differing supports, to
which the W1 distance is reasonably sensitive, as well as to individual sample quality (measured by
MMD) — this supports our claim that recovering jet feature distributions implies accurate learning of
individual cloud structure. Together this suggests that low W1 scores are alone sufficient to validate
sample quality and against mode collapse, and justifies our criteria that a practical ML simulation
alternative have W1 scores close to the baselines in Table 2. However, MMD and coverage, being
focused tests of these aspects of generation, are useful for understanding failure modes.

8
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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Many cases where simulation is not good enough - can 
train generate models to act as simulation surrogates

N.B. everything in I’ve shown before this, 
we trained on simulation, not on data (!)
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train generate models to act as simulation surrogates

Example 1: unbinned templates for QCD jets 
     to extrapolate in jet multiplicity
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Particles
Discriminator

Particles

strip particles of mass 
and add noise

Generator

Input Particle with Mass
replaced by Noise

Particle + 
Generated

Mass

Sampled from Delphes+Pythia

Mass replaced by Noise

The noise  is sampled
from a latent space 

Update Generator Weights
According to some cost

Update Discriminator Weights

According to some cost

Cost Functions
Particle + Real Mass

Figure 1. Flowchart describing how GANs are used to learn templates (shown here mass templates
for the RPV-SUSY search) given kinematic variables. The generator network is a feed-forward network
that takes as input particles with their mass replaced by noise, and generates mass according to a
learnt distribution. These fake particles are bundled with real particles and passed to the discriminator,
which learns to discriminate between the real and fake distributions.
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Figure 5. The physics-based (‘real’) mass distributions compared with distributions from the template
method and the vanilla GAN in bins of jet pT (top row), ÷ (middle row), and N (bottom row). The
uncertainty in the ratio was calculated as the 1-sigma error assuming poisson distributions of events in
each bin. The error shown in the plots is the calculated statistical error. The corresponding plot in the
control region is qualitatively similar, but converges quicker.
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Many cases where simulation is not good enough - can 
train generate models to act as simulation surrogates

Example 2: unbinned templates for QCD jets 
     to extrapolate in dijet mass 2

m
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SB SR SB
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pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Normalizing 
Flow

7

FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

Anomaly detection 
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1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) produce data rates
around 40 terabytes per second and per experiment [1,2], a number that will increase further
for the high-luminosity upgrades [3, 4]. These rates are far too large to record all events, so
these experiments use triggers to quickly select potentially interesting collisions, while discard-
ing the rest [5–8]. The first two trigger stages are a hardware-based low-level trigger, selecting
events with µs-level latency, and a software-based high-level trigger with 100 ms-level latency.
After these two trigger stages, some interesting event classes, such as events with one highly-
energetic jet, still have too high rates to be stored. They are recorded using prescale factors,
essentially a random selection of events to be saved. An additional strategy to exploit events
which cannot be triggered on systematically is data scouting, or trigger-level analysis [9–12].
Through fast online algorithms, parts of the reconstruction are performed at trigger level, and
significantly smaller, reconstructed physics objects are stored instead of the entire raw event.
This physics-inspired compression increases the number of available events dramatically, with
the caveat that the raw events will not be available for offline analyses.

Using machine learning (ML) to increase the trigger efficiency is a long-established idea [13],
and simple neural networks for jet tagging have been used, for example, in the CMS high-
level trigger [14]. The advent of ML-compatible field-programmable gate arrays (FPGAs) has
opened new possibilities for employing such classification networks even at the low-level trig-
ger [15–21]. ML-inference on FPGAs is making rapid progress [15], but the training of so-
phisticated networks on such devices is still an active area of research. On the other hand, the
all-GPU first trigger stage of LHCb might allow the ready deployment of this idea [22].

We propose a new strategy, complementary to current trigger strategies and related meth-
ods, where instead of saving individual events, an online-trained generative ML-model learns
the underlying structure of the data. The advantage of our strategy, illustrated in Fig. 1, is its
fixed memory and storage footprint. While in a traditional trigger setup more events always
require more storage, the size of the generative model is determined by the number of param-
eters. Additional data increases the accuracy of these parameters at fixed memory size, until
the capacity of the model is reached. In practice, we envision an online generative model to
augment data taking at the HLT level and act as a scouting tool in regions currently swamped
by background. However, a sufficiently optimized version of this approach could transform
data taking by removing the need for triggers altogether.

The viability of our novel approach rests on the assumption that the relevant physics of
LHC collisions can be described, statistically, by far fewer parameters than are necessary to1 1
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Figure 1: Illustration of data compression at the LHC. Most analyses are performed
offline, based on entire events and lossless compression (left). Data scouting employs
lossy compression per event (center). Our method compresses an entire data set by
learning a generative model for events x in terms of network parameters ✓ (right).

2

You can think of surrogate models as compressing 
the data into the parameters of the neural network.
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Figure 2: Illustration of the proposed workflow. First, we train a generative model on
all incoming events (online). Then, we use the trained model to generate data and
analyze the generated data for signs of new physics (offline). If necessary, we adjust
the trigger to take new data accordingly (online) and analyze that data (offline).

been shown to precisely learn complex distributions in particle physics [33–43]. The statistical
benefits of using generative models are discussed in Ref. [44], for a discussion of training-
related uncertainties using Bayesian normalizing flows see Refs. [45,46].

The properties of online training, specifically seeing every event independently and only
once, are in tension with training generative models. Such models perform best when they
have the option to look at data points more than once. Additionally, processing several events
at the same time should allow the model to train significantly faster through the use of GPU-
based parallelization and stochastic gradient descent. This is why we follow a hybrid approach:
incoming events are collected in a buffer with size Nbuff. Once this buffer is full, it is passed
to the network, which processes the information in batches of size Nbatch. This process is
iterated over Niter times. After this, the buffer is discarded and replaced by the next buffer. We
visualize this scheme in Fig. 3. In addition to aiding the network training, this hybrid training
also decouples the network training rate from the data rate, as we can continuously adapt Niter
to ensure the network is done with the current buffer by the time the next is filled. Additional
technical details, including the estimation of uncertainties, of our approach are discussed in
the context of the examples presented below.

3 Parametric example

We first illustrate our strategy for a 1-dimensional parametric example. While in practice it
would be straightforward to store at least a histogram for any given 1-dimensional observ-
able, this scenario still allows us to explore how generative training and subsequent statistical
analysis approaches need to be modified for the ephemeral learning task.

3.1 Data, model, training

The 1-dimensional data is inspired by a typical invariant mass spectrum with a resonance. In
a sample with N events, or points, every event is randomly assigned to be either signal or
background with a probability of � or 1��, respectively. On average, this gives �⇥ N signal

4
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Figure 6: Left: signal significance as a function of the amount of training data for the
classical approach, based on all training data, and the ONLINEFLOW. Right: signal
significance as a function of the prescale factor. A prescale factor of one corresponds
to 500 ⇥ 104 events. The shaded regions estimate the uncertainty based on five
executions of the experimental setup.

region and the corresponding uncertainties

B =
2

Nens

Nens/2X

i

Bi �B =
vt 2

Nens
�(B)

O =
2

Nens

Nens/2X

i

Oi �O =
vt 2

Nens
�(O) , (5)

where �(X ) is the standard deviation of X over the ensemble and, in our case, Nens/2 = 10.
The signal rate and uncertainty,

S =O� B �2
S = �

2
O
+�2

B , (6)

define the signal significance

significance=
Sq

�2
S + (
p

B)2
. (7)

The contribution
p

B represents the flow statistical uncertainty from the finite amount of gen-
erated samples. It will usually be negligible compared to the data statistical uncertainty, �S ,
but we still include it in our calculation for consistency.

Because for our parametric example we can save the training data, as well as the weights of
all models after each buffer, we can track the signal significance during the online training. In
the left panel of Fig. 6 we compare the significance of the ONLINEFLOW and the complete train-
ing data. As expected, the data-derived significance scales with the square root of the number
of events. The ONLINEFLOW significance initially rises at a similar rate, and then increases at a
slower rate. Asymptotically, the significance may saturate if the network approaches the limits
of its expressiveness.

In the right panel of Fig. 6, we compare the performance of ONLINEFLOW vs the classical
bump hunt with different prescale factors fpre. We see that, as expected, the significance of the
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You can think of surrogate models as compressing 
the data into the parameters of the neural network.

Can this also be used for anomaly detection?

(amount of data discarded by standard trigger)
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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Figure 1: BayesFlow setup of the cINN for training and inference [47].

Finally, we can apply a coordinate transformation for the bijective mapping and enforce a
Gaussian noise distribution with mean zero and width one for the latent distribution P (z),
so the loss function becomes

L(✓, ) = �
⌧

log P (g✓(m; h (x))) + log

����
@g✓(m; h (x))

@m

����

�

m,x

= �
⌧
�1

2
kg✓(m; h (x))k2 + log

����
@g✓(m; h (x))

@m

����

�

m,x

. (8)

This loss guarantees that the networks recover the true posterior under perfect conver-
gence [47].

Inference BayesFlow [47] provides a cINN framework which we can use to measure funda-
mental QCD parameters. From the inversion of a detector simulation and QCD radiation [63]
we know how, given a single detector-level event, the cINN generates samples from a proba-
bility distribution over the phase space of the hard scattering. For the jet inference presented
in this paper, the BayesFlow setup corresponds to this unfolding setup, in which we replace
the parton-level phase space with the model parameter space and the detector-level phase
space with the simulated data. In Fig 1 we give a graphical illustration of the inference setup,
for the training and the inference phases.

To train the BayesFlow networks we use the fact that we can simulate an arbitrary number
of jets fast. This allows us to employ mini-batch gradient descent to approximate the expecta-
tion in the above optimization criterion via its Monte-Carlo empirical mean. Moreover, if we
train the networks on jet samples of varying size, we can use them on data samples with any
size, as long as this size is within the domain of the pre-defined distribution over sample sizes.
The networks will approximate the correct push-forward from a given prior P (m) in model
space to a posterior P (m|x) contingent on a set of measurements x. When the test sample
size leaves the training domain the posterior accuracy will degrade. In case we need to analyse
larger data sets we can then follow the Bayesian logic behind the BayesFlow framework [47]
and use the posterior from an earlier measurement as a prior.
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Figure 8: Posterior probabilities for the Sherpa shower, varying the gluon radiation parame-
ters only, {Dqq, Fqq, Cqq}. We assume SM-like jets and show results without Delphes detector
simulation (left) and including detector e↵ects (right).

the splitting kernels. The number of constituents nPF generally increases with Dqq. The toy
shower does not generate a very large number of splittings. Hadronization increases the num-
ber of constituents significantly, but this e↵ect has nothing to do with QCD splittings. The
detector simulation with its resolution and thresholds again leads to a slight decrease. The
width of the constituent distribution, wPF, is small for the toy shower, with a peak once the
toy shower generates enough splittings. An increase in Dqq moves the distribution away from
very small values. Hadronization enhances the peak around wPF ⇡ 0.2, driven by the hadron
decays, and the detector e↵ects have a limited e↵ect because of the explicit pT -weighting. For
pTD a single hard object gives pTD = 1 and adding a soft constituent leads to a downward
shift. The small number of QCD splittings leads to a second peak structure around pTD ⇠ 0.7
for the toy shower, but the entire toy-level distribution has to be taken with a grain of salt.
Hadronization then induces the typical shape with a broad maximum below 0.5, again with
little impact from the detector e↵ects. Finally, the constituent-constituent correlation C0.2

loses all toy-level events at small values when we include hadronization, and the broad feature
around C0.2 ⇠ 0.4 becomes more narrow and moves to values around 0.6. As a side remark,
this variable is particularly e↵ective to distinguish jets from hard quarks and hard gluons,
because the two peak structures are relatively well separated with gluons giving larger values
of C0.2.

The main message from Fig. 7 is that from a QCD point of view the hadronization e↵ects
are qualitatively and quantitatively far more important than the detector e↵ects. Therefore,
we split our study into two parts. First, we shift from the toy shower to the full Sherpa
shower [65], including hadronization. Next, we add detector e↵ects using Delphes [80] with
the default ATLAS card. Unlike for the toy shower, we now vary the parameters for gluon
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In massless QCD some of the kernels P̂ include infrared divergences. They can be partially
fractioned to remove soft double counting, giving us the three QCD splittings [69]

Pqq(z, y) = CF


Dqq

2z(1 � y)
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⇤
. (11)

In this form we include a set of parameters which to leading order in perturbative QCD are
given by

Dqq,gg = 1 Fqq,gg = 1 Cqq,gg,gq = 0 . (12)

The splitting kernels given in Eq.(11) define the fundamental physics hypothesis of our mea-
surements, which should generalize the CA/CF studies from LEP [28, 29]. This hypothesis
is flexible enough to accomodate precision predictions consistently with the kinematics of
parton shower data at the LHC. Concerning its uniqueness, in standard parton showers, D
is typically modified to include a universal K-factor that coincides with the two-loop cusp
anomalous dimension and resums sub-leading logarithms arising from the collinear splitting
of soft gluons [70]. For simplicity, we will set these terms to zero in our toy shower. Within
Sherpa, they are included through a modified running coupling. The second term reflects
the leading terms in pT , in our case truncated in the strong coupling. The rest terms Cij

are, in our case, defined by the appearance of p2T . Generally, we only consider Eq.(11) as a
first attempt for an appropriate theory hypothesis, which might have to be slightly modified
according to the precision simulation framework used for the actual analysis. Another moti-
vations for a modified theory hypothesis could be specific parametrizations to, for instance,
incorporate quantum e↵ects or 1 ! 3 splittings. We skip this option because we will see
that already the global rest terms of Eq.(11) challenge our simulated data. As alluded to
in the Introduction, a caveat concerning the pre-defined theory hypothesis is common to all
simulation-based or likelihood-free analyses.

We will vary the parameters in Eq.(12) away from the leading order QCD prediction,
always making sure that the splitting kernels give positive splitting probabilities all over the
collinear phase space by setting negative kernel values to zero. Given that the numerically
leading contribution comes from the regularized pole, we can approximately identify the
measurement of Dqq and Dgg with measurements of CF and CA, as quoted in Eq.(1).

Data and network To understand the proposed measurement in a controlled setup we sim-
ulate the on-shell process

e+e� ! Z ! qq̄ (13)

assuming massless quarks and combined with a fast approximate parton shower cuto↵ at
1 GeV. Its phase space is completely defined by the scattering angle. For each event we
apply the parton shower to one of the outgoing quarks, such that the second quark acts as
the spectator for the the first splitting and we only consider one jet. For our jets sample we
generally have

pT,j <
mZ

2
, (14)
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incorporate quantum e↵ects or 1 ! 3 splittings. We skip this option because we will see
that already the global rest terms of Eq.(11) challenge our simulated data. As alluded to
in the Introduction, a caveat concerning the pre-defined theory hypothesis is common to all
simulation-based or likelihood-free analyses.

We will vary the parameters in Eq.(12) away from the leading order QCD prediction,
always making sure that the splitting kernels give positive splitting probabilities all over the
collinear phase space by setting negative kernel values to zero. Given that the numerically
leading contribution comes from the regularized pole, we can approximately identify the
measurement of Dqq and Dgg with measurements of CF and CA, as quoted in Eq.(1).

Data and network To understand the proposed measurement in a controlled setup we sim-
ulate the on-shell process

e+e� ! Z ! qq̄ (13)

assuming massless quarks and combined with a fast approximate parton shower cuto↵ at
1 GeV. Its phase space is completely defined by the scattering angle. For each event we
apply the parton shower to one of the outgoing quarks, such that the second quark acts as
the spectator for the the first splitting and we only consider one jet. For our jets sample we
generally have

pT,j <
mZ

2
, (14)
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Can we use generative models directly for inference?   
(and not “just” for augmenting/accelerating simulation)

Example 2: Unfolding

See also 1911.09107 (“OmniFold”) and 2101.08944 (“OTUS”)
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Figure 2: Structure of INN. The {xd,p} denote detector-level and parton-level events, {rd,p}
are random numbers to match the phase space dimensionality. A tilde indicates the INN
generation.

3 Unfolding detector e↵ects

We introduce the conditional INN in two steps, starting with the non-conditional, standard
setup. The construction of the INN we use in our analysis combines two goals [11]:

1. the mapping from input to output is invertible and the Jacobians for both directions are
tractable;

2. both directions can be evaluated e�ciently. This second property goes beyond some other
implementations of normalizing flow [38,40].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable.

In Sec. 3.3 we will show how the conditional INN retains a proper statistical notion of the
inversion to parton level phase space. This avoids a major weakness of standard unfolding
methods, namely that they only work on large enough event samples condensed to one-
dimensional or two-dimensional kinematic distributions. This could be a missing transverse
energy distribution in mono-jet searches or the rapidities and transverse momenta in top
pair production. To avoid systematics or biases in the full phase space coverage required
by the matrix element method, the unfolding needs to construct probability distributions in
parton-level phase space, including small numbers of events in tails of kinematic distributions.

3.1 Naive INN

While it is clear from our discussion in Ref. [48] that a standard INN will not serve our
purpose, we still describe it in some detail before we extend it to a conditional network.
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Figure 9: cINNed example distributions. Training and testing events include two to four jets,
combining the samples from Fig. 6 and Fig. 8 in one network. At the parton level there exist
only two W -decay quarks.

In Fig. 10 we split the unfolded distributions in Fig. 9 by the number of 2, 3, and 4 jets
in the detector-level events. In the first two panels we see that the transverse momentum
spectra of the hard partons are essentially independent of the QCD jet radiation. In the
language of higher-order calculations this means that we can describe extra jet radiation
with a constant K-factor, if necessary with the appropriate phase space mapping. Also the
reconstruction of the W -mass is not a↵ected by the extra jets, confirming that the neural
network correctly identifies the W -decay jets and separates them from the ISR jets. Finally,
we test the transverse momentum conservation at the unfolded parton level. Independent
of the number of jets in the final state the energy and momentum for the pre-defined hard
process is conserved at the 10�4 level. The kinematic modifications from the ISR simulation
are unfolded correctly, so we can compute the matrix element for the hard process and use it
for instance for inference.
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Can we use generative models directly for inference?   
(and not “just” for augmenting/accelerating simulation)

Example 2: Unfolding
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Figure 2: Structure of INN. The {xd,p} denote detector-level and parton-level events, {rd,p}
are random numbers to match the phase space dimensionality. A tilde indicates the INN
generation.

3 Unfolding detector e↵ects

We introduce the conditional INN in two steps, starting with the non-conditional, standard
setup. The construction of the INN we use in our analysis combines two goals [11]:

1. the mapping from input to output is invertible and the Jacobians for both directions are
tractable;

2. both directions can be evaluated e�ciently. This second property goes beyond some other
implementations of normalizing flow [38,40].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable.

In Sec. 3.3 we will show how the conditional INN retains a proper statistical notion of the
inversion to parton level phase space. This avoids a major weakness of standard unfolding
methods, namely that they only work on large enough event samples condensed to one-
dimensional or two-dimensional kinematic distributions. This could be a missing transverse
energy distribution in mono-jet searches or the rapidities and transverse momenta in top
pair production. To avoid systematics or biases in the full phase space coverage required
by the matrix element method, the unfolding needs to construct probability distributions in
parton-level phase space, including small numbers of events in tails of kinematic distributions.

3.1 Naive INN

While it is clear from our discussion in Ref. [48] that a standard INN will not serve our
purpose, we still describe it in some detail before we extend it to a conditional network.
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Figure 9: cINNed example distributions. Training and testing events include two to four jets,
combining the samples from Fig. 6 and Fig. 8 in one network. At the parton level there exist
only two W -decay quarks.

In Fig. 10 we split the unfolded distributions in Fig. 9 by the number of 2, 3, and 4 jets
in the detector-level events. In the first two panels we see that the transverse momentum
spectra of the hard partons are essentially independent of the QCD jet radiation. In the
language of higher-order calculations this means that we can describe extra jet radiation
with a constant K-factor, if necessary with the appropriate phase space mapping. Also the
reconstruction of the W -mass is not a↵ected by the extra jets, confirming that the neural
network correctly identifies the W -decay jets and separates them from the ISR jets. Finally,
we test the transverse momentum conservation at the unfolded parton level. Independent
of the number of jets in the final state the energy and momentum for the pre-defined hard
process is conserved at the 10�4 level. The kinematic modifications from the ISR simulation
are unfolded correctly, so we can compute the matrix element for the hard process and use it
for instance for inference.
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Measurement of lepton-jet correlation in deep-inelastic scattering

with the H1 detector using machine learning for unfolding

H1 Collaboration⇤

(To be submitted to Physical Review Letters)
(Dated: August 30, 2021)

The first measurement of lepton-jet momentum imbalance and azimuthal correlation in lepton-
proton scattering at high momentum transfer is presented. These data, taken with the H1 de-
tector at HERA, are corrected for detector effects using an unbinned machine learning algorithm
(OmniFold), which considers eight observables simultaneously in this first application. The un-
folded cross sections are compared to calculations performed within the context of collinear or
transverse-momentum-dependent (TMD) factorization in Quantum Chromodynamics (QCD) as well
as Monte Carlo event generators. The measurement probes a wide range of QCD phenomena, in-
cluding TMD parton distribution functions and their evolution with energy in so far unexplored
kinematic regions.

Introduction. Studies of jets produced in high energy
scattering experiments have played a crucial role in es-
tablishing Quantum Chromodynamics (QCD) as the fun-
damental theory underlying the strong nuclear force [1].
During the current era of the Large Hadron Collider
(LHC), experimental, theoretical, and statistical advances
have ushered in a new era of precision QCD studies with
jets [2, 3] and their substructure [4, 5].

These innovations motivate new measurements of
hadronic final states in deep inelastic scattering (DIS) at
the HERA collider. DIS measurements provide high pre-
cision to study jets, because of the minimal backgrounds
from the ep initial state and the excellent segmentation,
energy resolution, and calibration of the HERA experi-
ments.

In the DIS Born level limit, a virtual photon is ex-
changed with a quark inside the proton to create a back-
to-back topology between the lepton and the resulting
jet(s) as shown in Fig. 1. The Born level limit repre-
sented a background for most jet measurements by H1 [6–
16] and ZEUS [17–24], which targeted higher-order QCD
processes [25]. While the one jet final state has been stud-
ied inclusively in terms of the scattered lepton kinematics
to determine proton structure functions [26–30], the im-
mense potential of the jet kinematics in this channel is
only now being realized.

For example, single jet production has been proposed as
a key channel for extracting quark transverse-momentum-
dependent (TMD) parton distribution functions (PDFs)
and fragmentation functions (FFs) [31–41]. In particu-
lar, measurements of back-to-back lepton-jet production
e+p ! e+jet+X provide sensitivity to TMD PDFs in the
limit when the imbalance qjet

T = |~p e
T + ~p jet

T | of the trans-

verse momentum of the scattered lepton (p e
T) and the jet

(p jet
T ) is relatively small (qjet

T ⌧ p e
T ⇠ p jet

T ) [34]. This cor-
responds to a small deviation from ⇡ in azimuthal angle
between the lepton and jet axes (��jet

⌘ |⇡�(�e
��jet)|)

in the transverse plane. TMD PDFs are an essential in-
gredient for the quantum tomography of the proton that
probes the origin of its spin, mass, size, and other prop-
erties.

Figure 1. A display of the H1 tracker and calorimeter detec-
tors, showing a DIS event with approximate Born kinematics,
eq ! eq, which yields an lepton and a jet in a back-to-back
topology perpendicular to the beam axis.

The energy dependence of TMD PDFs can also probe
unexplored aspects of QCD as they follow a more complex
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.

These (and related) methodologies 
are being studied for ep collisions!

NN-based 
(OmniFold)



100Uncertainties

Performance continues to improve on many fronts.  As we integrate 
these tools into our workflows, we need to think about uncertainties. 

See also 1909.03081, 2002.06307, 2104.04543 (Generative Bayesian NNs), and 2107.08979 (“resampling”)

A. Butter et al., 2006.06685; S Bieringer et al., 2202.07352

One question is about the statistical power of samples 
from a generative model.  This depends on the implicit or 

explicit information we encode in the networks.
SciPost Physics Submission

Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The
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FIG. 1. A schematic diagram of (top) the training setup
for a usual GAN and (bottom) the SymmetryGAN variation
discussed in this paper for automatically discovering symme-
tries. Here, g is the generator and d is the discriminator. Not
represented here is the incorporation of the inertial reference
dataset. In our numerical examples, this is accomplished by
directly imposing constraints on g.

its symmetric counterpart [9–11] (similar to anomaly de-
tection methods comparing data to a reference [12–14]).
Another class of targeted approaches can be found in the
domain of automatic data augmentation. If a dataset can
be augmented without changing its statistical properties,
then one has learned a symmetry. Significant advances
in this area have used reinforcement learning [15, 16].

An alternative symmetry discovery approach that is
flexible, fully di↵erentiable, and simple is based on gen-
erative models [17, 18]. Usually, a generative model
is a function that maps random numbers to structured
data. For example, a deep generative surrogate model
can be trained such that the resulting probability density
matches that of a target dataset. For symmetry discov-
ery, by contrast, the random numbers are replaced with
the target dataset itself. In this way, a well-trained gener-
ator designed to confound an adversary will implement a
symmetry transformation. We call this generative model
framework for symmetry discovery SymmetryGAN, since
it has the same basic training strategy as a generative
adversarial network (GAN) [19], as shown in Fig. 1.

In this paper, we extend the SymmetryGAN approach
and introduce it to the physics community. In particu-
lar, we build a rigorous statistical framework for describ-
ing the symmetries of a dataset and construct a learn-
ing paradigm for automatically detecting generic sym-
metries. The key idea is that symmetries of a target

dataset have to be defined with respect to an inertial
reference dataset, analogous to inertial frames in classi-
cal mechanics. Our deep learning setup is simpler than
existing approaches and we develop an analytic under-
standing of the algorithm’s performance in simple cases.
This in turn allows us to understand the dynamics of the
machine learning as it trains from a random initialization
to an element of the symmetry group.
This rest of this paper is organized as follows. In

Sec. II, we build a rigorous statistical framework for dis-
covering the symmetries of a dataset, contrasting it with
discovering the symmetries of an individual data element.
Our machine learning approach with an inertial restric-
tion is introduced in Sec. III and the deep learning im-
plementation is described in Sec. IV. Empirical studies of
simple Gaussian examples, including both analytic and
numerical results, are presented in Sec. V. We then apply
our method to a high energy physics dataset in Sec. VI.
In Sec. VII, we discuss possible ways to go beyond sym-
metry discovery and towards symmetry inference, with
further studies in App. A. Our conclusions and outlook
are in Sec. VIII.

II. STATISTICS OF SYMMETRIES

What is a symmetry? Let X be a random variable
on an open set O ✓ Rn, and let x be an instantiation
of X. When we refer to the symmetry of an individual
data element x 2 X, we usually mean a transformation
h : O ! O such that:

h(x) = x, (1)

i.e. x is invariant to the transformation h. More generally,
we can consider functions of individual data elements,
f : O ✓ Rn

! O
0
✓ Rm. In that case, the function is

symmetric if

f(h(x)) = f(x), (2)

i.e. the output of f is invariant to the transformation h

acting on x. One can also consider equivariances, where
the output of f has well-defined transformation proper-
ties under the symmetry [20–23]. While symmetries act-
ing on individual data elements are interesting, they are
not the focus of this paper.

We are interested in the symmetries of a dataset as
a whole, treated as a statistical distribution. Let X be
governed by the probability density function (PDF) p.
Naively, a symmetry of the dataset X is a map g : Rn

!

Rn such that g preserves the PDF:

p(X = x) = p(X = g(x)) |g0(x)|, (3)

where |g
0(x)| is the Jacobian determinant of g. While it

is necessary that any candidate symmetry preserves the
probability density, it is not su�cient, at least not in the
usual way that physicists think about symmetries.
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(i) (ii)

FIG. 11. (i) Empirically discovered symmetries in the LHC Olympics dijet dataset. The final values of ✓1 and ✓2 from the
SymmetryGAN are plotted over the line ✓1 = ✓2. (ii) The map between initial and final symmetry parameters. The final
rotation angle is the average of the initialized rotation angles, o↵set by ⇡ if the angle between the initialized angles is reflex.

(i) (ii)

FIG. 12. Two dimensional projection of (i) the original LHC Olympics dijet dataset and (ii) its transformation by one of the
generators discovered by the SymmetryGAN. Here, we plot the momenta of the two leading jets in the transverse plane.

The framework of generative 
models is quite flexible and we can 

do more than generate events.

For example, can discover 
symmetries in data!
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https://iml-wg.github.io/HEPML-LivingReview/

See also https://arxiv.org/abs/2102.02770
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Now we’ll hear quite a bit about Quantum Machine Learning

Relation to QML

It seems like the jury is still out about the near term utility of QML 
(see also Sulaiman’s talk tomorrow for a counter point to many recent papers in this area)

I’ll stress that classical ML is already impacting HEP 
science and it will continue to grow in importance (!)

QML is an exciting tool and I’ll certainly watch developments with interest.  
I look forward to the results and discussion today and tomorrow!
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]

�3 =

�
� (0.5)
1

�2�
� (1)
2

�0.5

� (2)
2

, (3.1)

where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
The numbers 1 and 2 label different color lines.

3.3.2 Global Event ijm

(can we identify what is actually going on here –ijm)
cite Lisa’s paper, Matt’s paper. [71][72][73]
jet pull: [49]
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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Conclusions and Outlook

Particle physics data are complex and 
unique - modern machine learning tools will 

help us them to the fullest potential to 
discover something new and fundamental!
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