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Our program with Quantum Machine Learning
Our Goal:
     To perform LHC High Energy Physics analysis with Quantum 
Machine Learning, to explore and to demonstrate that the potential of 
quantum computers can be a new computational paradigm for big data 
analysis in HEP.

Our present program is to employ the following four 
quantum machine learning methods:
      Method 1. Variational Quantum Classifier Method

Method 2. Quantum Support Vector Machine (QSVM) Kernel Method
Method 3. Quantum Neural Network Method 
Method 4. Quantum DeepSets Method

to LHC High Energy Physics analysis, for example ttH (H → 𝜸𝜸) and 
H→𝞵𝞵 (two LHC flagship analyses).
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ttH (H → 𝜸𝜸) analysis at the LHC 
The observation of ttH production (Higgs boson production 
in association with a top quark pair) by ATLAS and CMS at 
the LHC directly confirmed the interaction between the 
Higgs boson and the top quark, which is the heaviest 
known fundamental particle

H → 𝞵𝞵 analysis at the LHC 
Although the coupling between the Higgs boson and 
3rd-generation fermions has been observed, currently the 
coupling between the Higgs boson and 2nd-generation 
fermions is under intensive investigation. H→𝞵𝞵 is the most 
promising process to observe such a coupling by ATLAS 
and CMS at the LHC

Employ Quantum Machine Learning to LHC High Energy Physics 
analyses, for example ttH (H → 𝜸𝜸) and H→𝞵𝞵 



Method 1: Employing Variational Quantum Classifier 
to ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● In 2018, a Variational Quantum Classifier method was introduced by 
IBM, published in Nature 567 (2019) 209. The Variational Quantum 
Classifier method can be summarized in four steps:
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For 10 qubits, using ttH analysis dataset (100 
events) and H → 𝞵𝞵 analysis dataset (100 
events), Variational Quantum Classifier on IBM 
simulator (red) performs similarly with classical 
BDT (green) and classical SVM (blue).   

AUC 
(ttH)

AUC 
(H → 𝞵𝞵)

VQC 0.81 0.83

BDT 0.83 0.80

SVM 0.83 0.82

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● For 10 qubits, using ttH analysis dataset (100 events) and H → 𝞵𝞵 
analysis dataset (100 events), the result of Variational Quantum Classifier 
from IBM Quantum Hardware and result from Quantum Simulator are in 
good agreement. 

● The hardware running time for 100 events is 200 hours

IBM Hardware

hardware AUC = 0.82, simulator AUC = 0.83 hardware AUC = 0.81, simulator AUC = 0.83

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis

IBM Hardware



Method 2: Employing Quantum Support Vector 
Machine Kernel method to ttH (H → 𝜸𝜸) analysis

8



Sau Lan Wu (U. Wisconsin)   June 2, 2022Shaojun Sun (U. Wisconsin)   

Method 2: Quantum Support Vector Machine 
(QSVM) Kernel method

9

QSVM Kernel method (introduced by IBM, published in Nature 567 
(2019) 209): 

○ map classical data 𝑥 ⃗ to a quantum state |Φ(𝑥)⃗⟩ using a 
Quantum Feature Map function; 

○ calculate the kernel matrix between any two data events as  𝐾
(𝑥1⃗,𝑥2⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥2⃗)⟩|² using a quantum computer; 

○ then train the Quantum SVM the same way as a classical SVM. 
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● For 15 qubits, using ttH analysis dataset (20000 events), QSVM 
Kernel on simulator (red) achieves similar performances with 
classical SVM (blue) and classical BDT (green).   

Method 2: Employing QSVM Kernel with quantum simulators 
for ttH (H → 𝜸𝜸) analysis 
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Method 2: Employing QSVM Kernel with ibmq_paris, a 27-qubit 
machinefor ttH (H → 𝜸𝜸) analysis

● Using ttH analysis dataset (100 events), the QSVM Kernel results on 
the IBM Quantum Hardware (15 qubits) are promising and 
approaching the QSVM Kernel results on Quantum Simulator (the 
difference is likely due to effect of hardware noise)

● The average hardware running time for 100 events is approximately 
11 hours per run compared with 200 hours for 100 events in method 1.

IBM Hardware
hardware AUC = 0.777 

simulator AUC = 0.831

IBM Hardware



Method 3: Employing Quantum Neural Network 
for ttH (H → 𝜸𝜸) analysis

12
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We have been exploring a hybrid QNN of three layers:
○ Classical layer 1: transform input data so 

that its number of outputs matches 
number of qubits (PCA is no longer 
necessary)

○ Quantum layer (the core part): encode 
classical data into a quantum state, apply 
variational circuit containing trainable 
parameters, and measure the quantum 
state

○ Classical layer 2: convert the 
measurement of qubits to classification 
labels

Three layers are trained together to maximize the overall 
performance

Method 3: Hybrid Quantum Neural Network (QNN) 
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● Using the ttH analysis dataset with 0.6 million Delphes events (in total) and 
15 qubits, QNN on Google simulator (red) now performs similarly with 
classical Deep Neural Network (DNN) (blue) and classical BDT (green).

● The optimization of this QNN is still under development (e.g. more qubits), 
and we hope to achieve quantum advantage with large datasets.

Method 3: Employing QNN with Google simulator for ttH (H → 
𝜸𝜸) analysis

QNN AUC: 0.9349

DNN AUC: 0.9361

BDT AUC: 0.9365

0.6 million events 
15 qubits
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● 100 events, 10 
qubits, 1 run 

● The performance with quantum hardware is close to 
the performance with no-noise simulation.

● Hardware running time for 100 events: 384 hours

Method 3: Employing QNN with IBM Q hardware (10 qubits) 
for ttH (H → 𝜸𝜸) analysis

AUC (100 events)

Hardware 0.816

Simulator 0.816

IBM Hardware



Method 4: Employing Quantum Deepsets for ttH 
(H → 𝜸𝜸) analysis

16
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Method 4: Quantum Deepsets

● Each jet is mapped to a particle representation by a quantum neural network; 

● The summed particle representations concatenated with other particle 
variables arrive at an event representation;

● The  classification is then performed on the event representation by a 
quantum neural network. 
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● Using the ttH analysis dataset with 0.6 million Delphes events (in total) 
and 15 qubits, QNN (red) and  Quantum DeepSets (black) on Google 
simulator performs similarly with classical DeepSets (light blue),  DNN 
(blue) and BDT (green).

Method 4: Employing Quantum DeepSets with Google 
simulator for ttH (H → 𝜸𝜸) analysis

Quantum DeepSets AUC:  0.9370

QNN AUC: 0.9349

Classical DeepSets AUC: 0.9391

DNN AUC: 0.9361

BDT AUC: 0.9365

0.6 million events 
15 qubits
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● We have employed four Quantum Machine Learning methods to 
two LHC HEP flagship analyses (ttH (H → 𝜸𝜸) and H → 𝞵𝞵) with 
Delphes simulation events, and their performs on quantum 
simulators are similar as the classical ML methods.
● Method 1: VQC-Variational Quantum Classifier 

(J. Phys. G: Nucl. Part. Phys 48, 125003, 2021)

● Method 2: QSVM Kernel method (Phys. Rev. Research 3, 033221, 2021)

● Method 3: Quantum Neural Network (in progress)

● Method 4: Quantum Deepsets (in progress)

● For quantum hardware results, our present studies were limited to 
100 events and 10-15 qubits because of the limited access time as 
well as the limitations on circuit length and number of CNOT gates.

19

Summary (part 1)
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● Our results (on both simulators and hardware) demonstrate 
quantum machine learning on the gate-model quantum 
computers has the ability to differentiate signal and background 
in realistic physics datasets

● Next step: 
We are now working on the NERSC-Perlmutter supercomputer 
in order to run large number of qubits simulation (20-30 
qubits) with GPUs.  

20

Summary (part 2)
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BACKUP SLIDES
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● For 15 qubits, using ttH analysis dataset (20000 events), Google 
qsim simulator (red), IBM statevector simulator (blue), and 
Amazon local simulator (green) provide identical performances 
for QSVM Kernel method

Method 2: Employing Quantum Kernel Estimator with 
quantum simulators for ttH (H → 𝜸𝜸) analysis 


