Benchmarking quantum algorithms for quantum field theories

Yuan Feng University of California, Berkeley 2022-06-02 [Rinaldi et al., <u>arxiv:2108.02942</u>]

Quantum Field Theory

- The Standard Model of particle physics is our most precise description of the subatomic world
- It is a Quantum Field Theory, a very complicated many-body quantum system obeying the rules of quantum mechanics
- Some pieces of this description of the world are still missing:
 - What is the quantum theory for gravity?

Outline

- Introduction to Matrix Models
- Numerical techniques for QC:
 - Regularization: Truncated Hamiltonian
 - Quantum Computing **Benchmarks: VQE**
- Challenges for the future

Matrix Quantum Mechanics Motivations

- Holographic duality \rightarrow a quantum field theory "is" a gravitational theory • DO-branes and open strings \Leftrightarrow Black hole in Type IIA superstring
- - Supersymmetric QFT can be dir

(0+1)-dim maximally supersymmetric gauge theory a, Sonnenschein, Yank

interpretation 1: field theory

(p+1)-dim SYM gauge theory

Numerical Methods

- HPC simulations using Path Integral-based methods; Monte Carlo sampling of quantum mechanical paths.
- Challenges:
 - Sign problem → supersymmetric theories are hard
 - Wave function → physics applications require knowledge of entanglement (*i.e.* information paradox)

Numerical Methods for MQM Prototypes

 \rightarrow bosonic degrees of freedom

 \rightarrow generators of SU(N) group

 τ_{α}

SU(N) Gauge Symmetry

Supersymmetric Model

FERM.-BOS. INTERACTION

Challenge: numerical methods on quantum computers have a limited number of qubits!

ξα

 $\alpha = 1$

ZERO EN

$$\hat{Y} = \sum_{\alpha=1}^{N^2 - 1} \hat{\xi}^{\alpha} \tau_{\alpha} \qquad \hat{X}_I =$$

 \rightarrow fermionic degrees of freedom

Hilbert space regularization Truncation

Tensor product of each boson space

 $\mathcal{H}_{\text{FULL}} = \mathcal{H}_{\text{BOS}} \otimes \mathcal{H}_{\text{FER}}$

Tensor product of each fermion space

Truncated Hamiltonian

- Write the Hamiltonian in the truncated Hilbert space
 - e.g. Bosonic 2MQM for SU(2) $\rightarrow \Lambda$ cutoff level $\rightarrow \Lambda^6 \times \Lambda^6$ matrix (sparse)

2

$$\hat{H} = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^2 + \frac{m^2}{2} \hat{X}_{I\alpha}^2 \right) + \frac{g^2}{4} \sum_{\gamma,I,I} \hat{X}_{\gamma,I,I}^2$$

(4)

bosonic "sites'

 $|\text{VAC}\rangle = (\bigotimes_{I,\alpha} |0\rangle_{I\alpha})$

Challenge: physical results are

at **∧** = ∞ !

SYMMETRIES

Results SU(2) Bosonic 2MQM

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

┙║Ѡѵ┉

Quantum Computing Variational Quantum Eigensolver - VQE

Qubitization of MQM SU(2) Bosonic 2MQM

Truncation Level

Annihilation operator for site "i"

$$\begin{vmatrix} \hat{a}_{i} = \hat{I}_{1} \otimes \ldots \otimes \hat{I}_{i-1} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \hat{I}_{i+1} \otimes \ldots \\ \hat{a}_{i} = \hat{I}_{1} \otimes \ldots \otimes \hat{I}_{i-1} \otimes \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \hat{I}_{i+1} \otimes \ldots \\ \bullet \bullet \bullet$$

Build matrix Hamiltonian which gets mapped to qubits

VQE details SU(2) Bosonic 2MQM

Run each multiple instances of PQC from different initial points

Choose Quantum Simulator	 ►	Choose Classical Optimizer
Evaluation of cost function \rightarrow E(θ)		Optimize parameters $\rightarrow \theta^*$

- Statevector simulator
- Least SQuares Programming optimizer (SLSQP)
- Constrained Optimization By Linear Approximation optimizer (COBYLA)
- Limited-memory BFGS Bound optimizer (L-BFGS-B)
- Nelder-Mead

Run each optimizer with a max. number of iterations

Results SU(2) Bosonic 2MQM

Optimizer	Var. form: R_y			Var. form: $R_y R_z$				
	Min.	Max.	Mean	Std.	Min.	Max.	Mean	St
COBYLA	3.137059	4.769101	3.251414	0.347646	3.137237	4.782013	3.378628	0.4
L-BFGS-B	3.137059	5.769553	3.283462	0.434162	3.137050	4.286367	3.243110	0.3
SLSQP	3.137060	5.769554	3.327706	0.471957	3.137059	4.232419	3.236925	0.5
NELDER-MEAD	3.137471	5.713976	3.492673	0.478810	3.273614	6.443055	4.428032	0.'

PQC with y rotation gates: depth = $3 \rightarrow 24$ parameters | Best out of 100 runs

Results SU(2) Bosonic 2MQM at large coupling

 $\Lambda = 2$ $\log_2 \Lambda^6 = 6$ qubits

PQC with y rotation gates: depth = $3 \rightarrow 24$ parameters | Best out of 100 runs

Results SU(2) Supersymmetric 2MQM at large coupling

 $\Lambda = 2 \log_2 \Lambda^6 = 9$ qubits

		C	lepth = 5			depth = 9	
λ	COBYLA	L-BFGS-B	SLSQP	NELDE	R-MEAD	Best	HT (exa
0.5	0.088492	0.139702	0.134517	0.40600	3	0.02744	0.01690
1.0	0.135800	0.219268	0.308781	0.75245	9	0.07900	0.04829
$\boxed{2.0}$	0.387977	0.622704	0.522396	1.27193	9	0.17688	0.08385

Conclusions and roadmap

- \checkmark Quantum simulations can be used for addressing QFT questions
- ✓ Matrix models have favorable scaling of truncation errors with the number of qubits!
- Hybrid quantum-classical algorithms can be used on current quantum hardware
- Finding efficient parametrized quantum circuits for supersymmetric matrix models is very important
- Using machine learning or tensor network approximations to simplify quantum simulations could be crucial with current resources
- Error-mitigation will be important on real quantum hardware

Matrix-Model Simulations Using Quantum Computing, Deep Learning, and Lattice Monte Carlo

Enrico Rinaldi, Xizhi Han, Mohammad Hassan, Yuan Feng, Franco Nori, Michael McGuigan, and Masanori Hanada PRX Quantum 3, 010324