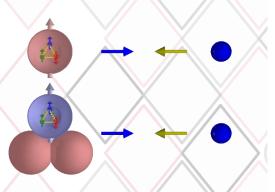
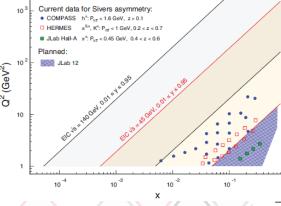
Asymmetries for single hadrons impact paper preparation

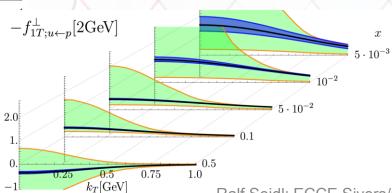
April 11, 2022

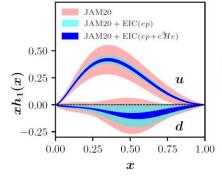
Ralf Seidl (RIKEN)
Theory/Pheno contributions:
Alexey Vladimirov (Regensburg)
Alexei Prokudin (PSU)
Daniel Pitonyak (Lebanon College)

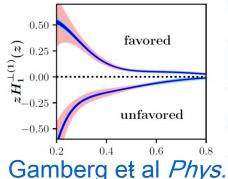

Motivation: 3D Transverse spin and momentum structure


x = 0.12

 $z=0.32 \\ P_{hT}=0.14 \; \mathrm{GeV}$

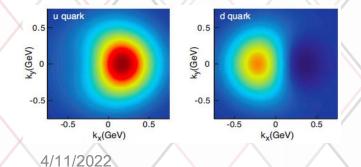

N³LO
NNLO



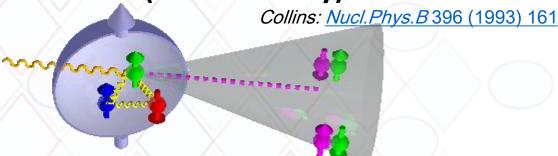

Deliverables	Observables	What we learn	Stage I	Stage II
Sivers &	SIDIS with	Quantum	3D Imaging of	3D Imaging of
unpolarized	Transverse	Interference &	quarks	quarks & gluon;
TMD quarks	polarization;	Spin-Orbital	valence+sea	$Q^2 (P_{hT})$ range
and gluon	di-hadron (di-jet)	correlations		QCD dynamics
Chiral-odd	SIDIS with	3 rd basic quark	valence+sea	$Q^2 (P_{hT})$ range
functions:	Transverse	PDF; novel	quarks	for detailed
Transversity;	polarization	hadronization		QCD dynamics
Boer-Mulders		effects		

From EIC Yellow Report:

Gamberg et al *Phys.Lett.B* 816 (2021) 136255 2



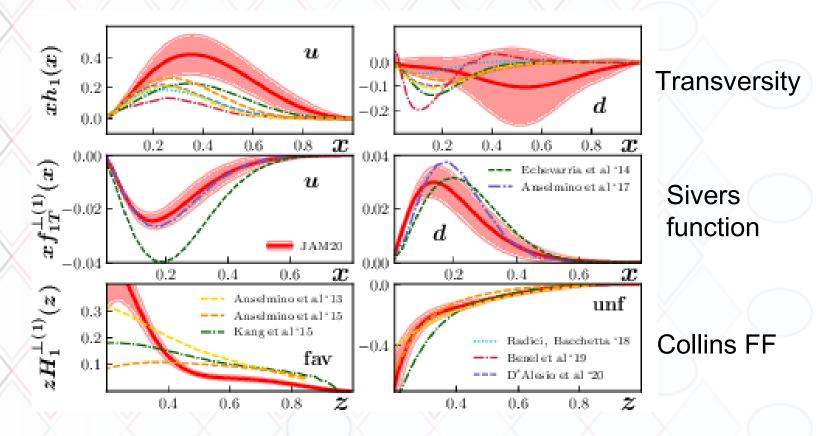
4/11/2022


Ralf Seidl: ECCE Sivers/Collins impact paper

Sivers Function Sivers: Phys.Rev.D41 (1990) 83

- Proton—spin quark orbit (k_T) correlation (relation to orbital angular momentum)
- Transverse momentum imbalance in nucleon creates asymmetry
- Suggested by Sivers (1990), initially dismissed by Collins, resurrected by Brodsky (2002), Collins → special process dependence (sign change DY←SIDIS)

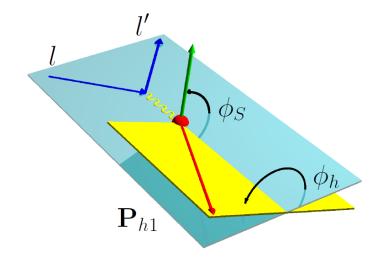
Collins Function (x Transversity)


- Quark spin hadron transverse momentum correlation (in fragmentation)
- Preferred direction of hadron creates asymmetry
- Analyzer for quark transversity (transverse quark spin) → access to tensor charge (Lattice, BSM?)
- A polarized (ie signed) fragmentation function

Both effects measured separately for quarks in SIDIS, FFs in e⁺e⁻

Current knowledge on these functions

- Only valence quark
 Sivers and Transversity
 functions known at this
 time with substantial
 uncertainties
- Experimentally covered range 0.01 < x < 0.3
- So far no sensitivity to sea quarks and gluons* and lower x



Experimental access to transversity and Sivers function

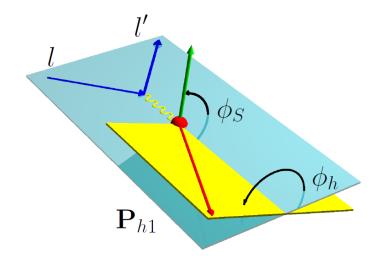
- Both functions are accessible as different azimuthal modulations in transversely polarized SIDIS of single hadrons
- Other TMD PDFs are similarly accessible via different modulations and spin orientations (though often higher twist effects present)
- Gluon Sivers via di-jet/di-HF TSSAs (only partially studied in ECCE so far needs to be addressed soon)

$$A_{UT}^{\sin(\phi_h + \phi_S)}(x, z, P_T) \propto \mathbf{S}_T \frac{\sum_{q,\overline{q}} e_q^2 \delta q(x, k_t) \otimes H_1^{\perp}(z, p_t)}{\sum_{q,\overline{q}} e_q^2 q(x, k_t) \otimes D_1(z, p_t)}$$

$$A_{UT}^{\sin(\phi_h - \phi_S)}(x, z, P_T) \propto \mathbf{S}_T \frac{\sum_{q, \overline{q}} e_q^2 f_{1T}^{\perp, q}(x, k_t) \otimes D_1(z, p_t)}{\sum_{q, \overline{q}} e_q^2 q(x, k_t) \otimes D_1(z, p_t)}$$

ECCE simulation setup and binning

- pythiaeRHIC (Pythia 6) simulations for e+p collisions at 4 energies similar to YR
- Generator output simulated through GEANT4 (prop4)
- Analyzed via slightly modified EventEvaluator TTrees
- Scattered lepton ($|\eta|$ <3.5) DIS kinematic reconstruction using reco track momenta (assuming perfect eID)
- DIS cuts: 0.01 < y < 0.95, $Q^2 > 1$, $W^2 > 10 GeV^2$
- SIDIS cuts: pions and kaons ($|\eta|$ <3.5), using true PID (assuming successful unfolding)
- Initially 12x8x12x12 kinematic bins (x,Q^2,z,P_T) and 16x16 azimuthal bins


Energ	y	Q^2 range	events	Luminosity (fb^{-1})	
18x27	5	1 - 100	38.71M	0.044	
		> 100	3.81M	1.232	
18x10	0	1 - 100	14.92M	0.022	
		> 100	3.72M	2.147	
10x10	0	1 - 100	39.02M	0.067	
		> 100	1.89M	1.631	
5x41		1 - 100	39.18M	0.123	
		> 100	0.96M	5.944	

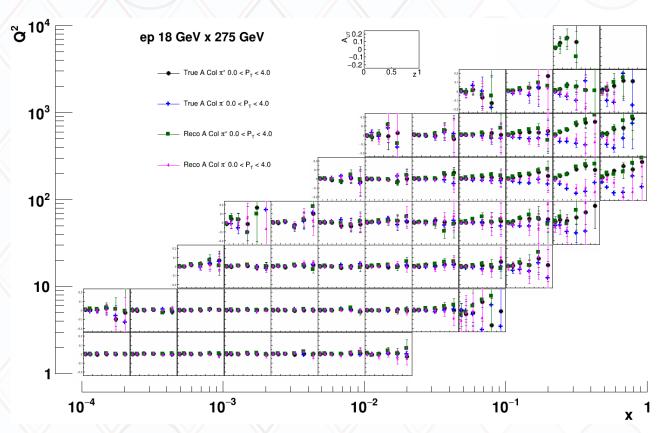
Kinematic variable	Bin boundaries		
x	$1.0x10^{-4}$, $2.154x10^{-4}$, $4.641x10^{-4}$, $1.0x10^{-3}$, $2.154x10^{-3}$, $4.641x10^{-3}$, $1.0x10^{-2}$, $2.154x10^{-2}$, $4.641x10^{-2}$, $1.0x10^{-1}$, $2.154x10^{-1}$, $4.641x10^{-1}$, $1.0x10^{0}$		
Q^2	$1.0x10^{0}$, $3.162x10^{0}$, $1.0x10^{1}$, $3.162x10^{1}$, $1.0x10^{2}$, $3.162x10^{2}$, $1.0x10^{3}$, $3.162x10^{3}$, $1.0x10^{4}$		
z	0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0		
P_T	0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 1.8, 2.4, 4.0		

Sivers/Collins measurements in SIDIS

- Reweight events according to true parton flavor q, hadron h, x, z, Q², P_{hT}, azimuthal angles and random spin orientiation
- ep \uparrow \rightarrow e'hX
- A_{UT} asymmetries (Unpolarized lepton beam, Transversely polarized target)
- Different azimuthal modulations related to Sivers effect $(\sin(\phi \phi_s))$ and Collins effect $(\sin(\phi + \phi_s))$
- Fit simultaneously in the reconstructed events and calculate asymmetries

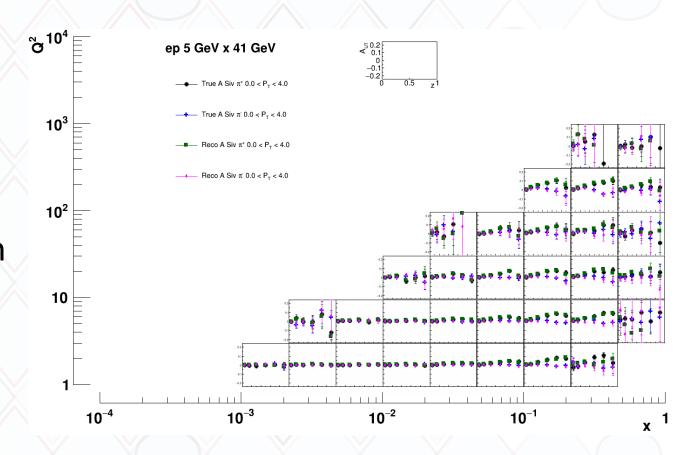


 Input structure functions (polarized and unpolarized) from Torino global fits (arXiv:0812.4366, arXiv:0805.2677) as in https://github.com/prokudin/tmd-parametrizations/

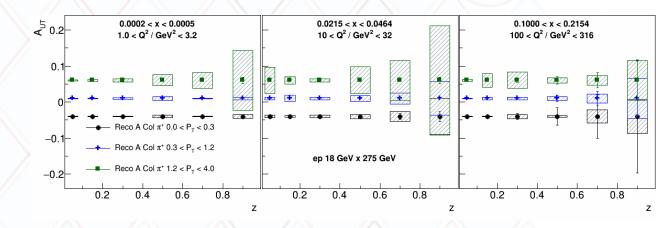

Example figures

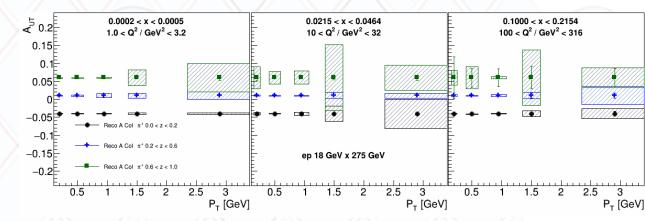
- Examples in 3 x and Q2 bins: on top for the Collins angular combination for charged pions true and reconstructed in an intermediate z bin
- Lower figures: same, either projected vs z or vs Pt

Collins asymmetries at highest energies


- Example of the level of reconstruction and uncertainties give the simulated statistics
- Nonzero asymmetries well reproduced at higher x
- Opposite sign for π^+/π^- seen as expected
- High precision at lower (yet hardly measured) x

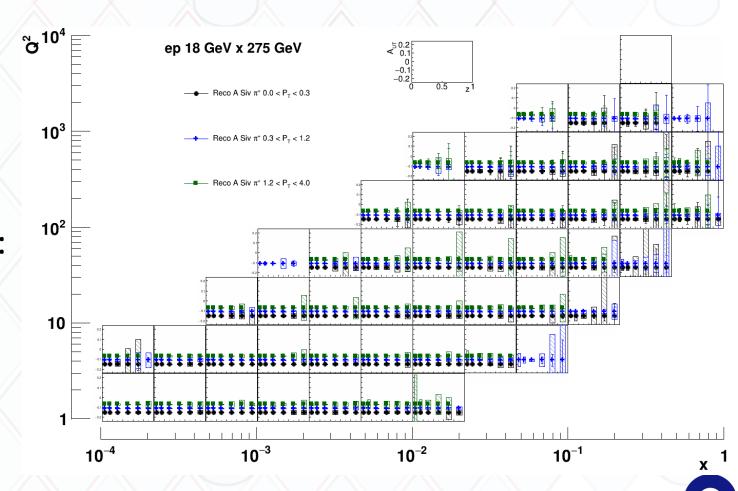
Sivers asymmetries at lowest energies


- Similar figure for the Sivers asymmetries
- Positive asymmetries seen for π^+ at higher x
- π⁻ asymmetries compatible with zero due to up/down/favored/disfavored cancellation
- High precision already with simulated statistics



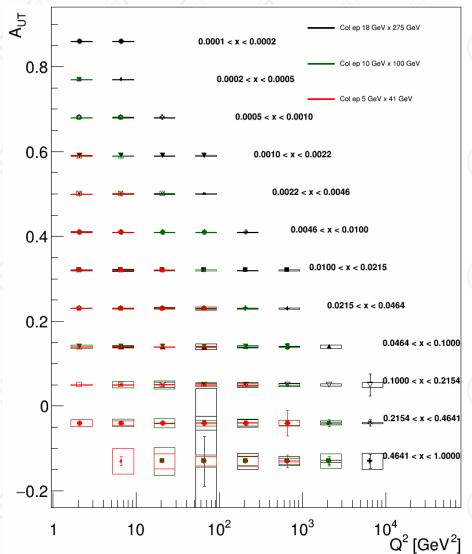
Projections to 10fb⁻¹

Systematic uncertainties estimated from differences between true and reconstructed asymmetries \rightarrow they are likely largely overestimated since most of the kinematic smearing would be unfolded, but give a sense of where uncertainties still might be larger due to that unfolding



Full projections

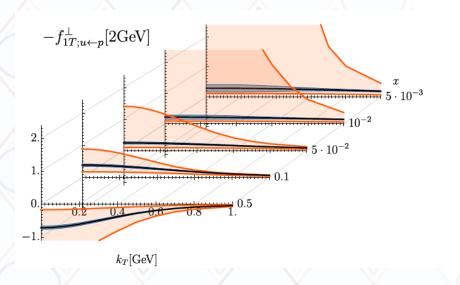
- Projected uncertainties in all (accessible) x-Q2 bins as a function of z (or Pt) integrated over Pt (or z)
- Currently shown in paper draft: highest and lowest collision energies and both Sivers and Collins asymmetries

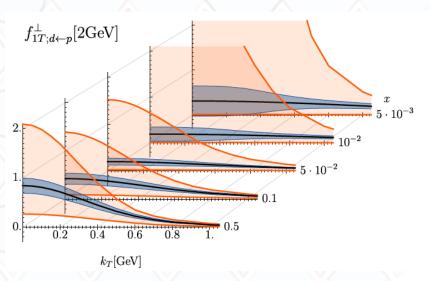


Scale dependence (and interplay of collision

energies)

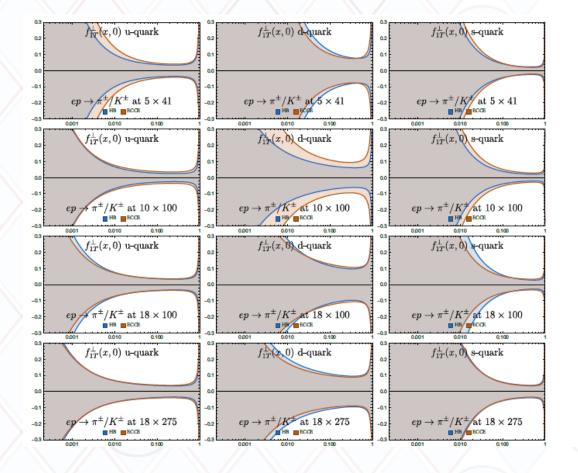
 An example of the expected uncertainties in x and Q² to study the scale dependence of the Sivers/Collins asymmetries (as TMD evolution is not very well known/contains other nonperturbative pieces)


- Overlap of the different energies shows how they increase the lever arm
- Note: in future evolution analysis likeely more Q² bins and maybe not as fine x binning



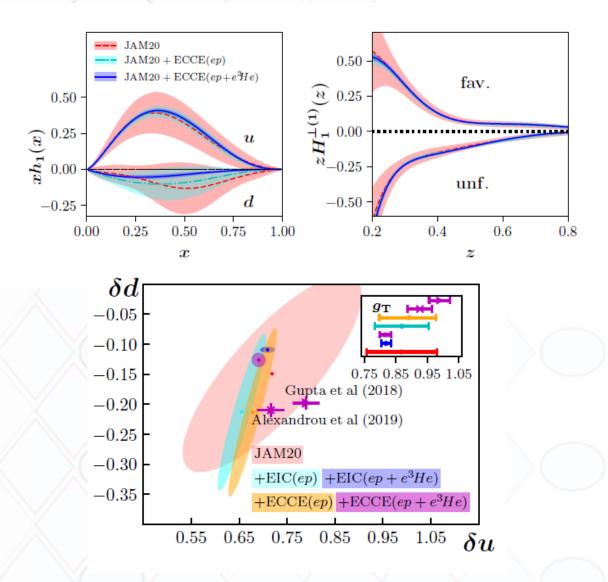
Impact for Sivers functions

- Similar to YR impact studies following the latest BPV global fit (arXiv:2103.03270) for the Sivers function based on the existing SIDIS +DY data
- Uncertainties are shown for current level of knowledge on up/down Sivers functions at various x vs kt and expected impact from ECCE



ECCE Impact compared to YR handbook detector (pseudo-data parametrized via eic-smear)

- The relative size of the up, down and s quark Sivers function uncertainties compared to the expected uncertainties from the YR studies
- Some minor differences but essentially similar level as YR HB detector (parametrized via eicsmear)



Tensor charge impact

• Similar to Gamberg et al Phys. Lett. B 816 (2021) 136255

(for YR) use fitting code from latest global fit Cammarota et al arXiv:2002.08384 to extract impact on Transversity, Collins functions and tensor charges

 Together with projected JLAB12 data precision to compare with Lattice results (and check for possible discrepancies)

Summary

- Sivers/Collins SIDIS paper essentially ready
- Some reduction in introduction (removal of motivational figures from note)

- Follow up on these studies as ECCE detector evolves and consider studying the proper unfolding of kinematic smearing as well as particle identification
- Similar studies still needed for gluon Sivers channel

