

Probing Jet Suppression with Pairs of Jets in ATLAS

Timothy Rinn

Discussing new ATLAS results documented at: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2019-02/</u>

QGP in Heavy Ion Collisions

Heavy ion collisions enable the creation of a high density and temperature medium to study strong force interactions in conditions similar to those of the early universe

Nuclear collisions and the QGP expansion

Producing the QGP in laboratories:

- Two collider facilities
 - Relativistic Heavy Ion Collider on Long Island New York
 - The Large Hadron Collider at CERN in Switzerland/France

Producing the QGP in laboratories:

- Two collider facilities
 - Relativistic Heavy Ion Collider on Long Island New York
 - The Large Hadron Collider at CERN in Switzerland/France

- Specifically designed for the study of heavy ion collisions
- Versatile Colliding facility!
 - Collides a vast range of nuclei:
 - Au+Au, Cu+Cu, d+Au, U+U, p+Au, He³+Au
 - Capable of producing transversely polarized proton beams
- > Tunable "low" collision energy of \leq 200 GeV
 - Produces a Quark Gluon Plasma with T ~ 220 MeV

Producing the QGP in laboratories:

- Two collider facilities
 - Relativistic heavy Ion Collider on Long Island New York
 - The Large Hadron Collider at CERN in Switzerland/France
- Joint facility for high energy particle and heavy ion physics
 - Share running time between Particle and Nuclear physics efforts
- High luminosity collider facility
 - ~30 kHz event rate in Pb+Pb
 - Run3 will enable 50 kHz running
- ➢ High collision energy of 5.02 TeV
 - \blacktriangleright Produces a QGP with T ~ 300 MeV

Probing the properties of the QGP

In order to understand the properties of interactions within the QGP we utilize a variety of probes:

> High p_T probes, such as jets of high p_T particles

Probes with a variety of masses:heavy flavor quarks

Correlations of particles

QCD jets

Produced in large momentum transfer QCD interactions:

- Such as: q + q -> q + q
- Calculable using perturbative techniques

QCD jets

Produced in large momentum transfer QCD interactions:

Such as: q + q -> q + q

 Calculable using perturbative techniques

Initial produced quarks/gluons evolve into a particle shower through fragmentation and hadronization

QCD jets

Produced in large momentum transfer QCD interactions:

Such as: q + q -> q + q

 Calculable using perturbative techniques

- Initial produced quarks/gluons evolve into a particle shower through fragmentation and hadronization
- Final state particles grouped into jets using "jet finding algorithms"

Jets as probe of QGP:

Quarks and Gluons interact with the QGP as they traverse the nuclear medium

- Multiple scatterings with quarks and gluons
- Experience medium induced gluon radiation

Results in energy moved outside of the jet cone

11

Dijets as probes of energy loss

Back-to-back jet pairs provide access to asymmetric energy loss

Can provide constraint on the contributions from:

- Path length dependent energy loss
- Energy loss fluctuations

Provide enhanced sensitivity to small amounts of jet quenching

Dijet fraction of inclusive jets

Measured fractions of inclusive jets which are part of the leading **dijet**, the **leading jet** of the dijet, or the **subleading** jet of the dijet

At 100 GeV: 83% of inclusive jets are part of the leading dijet \blacktriangleright Over 95% for $p_T^{reco} > 200$ GeV

Previous ATLAS results of dijet balance

Modifications of the x_J **shape** are measured in both Pb+Pb and Xe+Xe

In central Pb+Pb a peak structure is observed at intermediate x_I

A persistent challenge for the theory community

Dijet analysis overview:

Two-dimensional $(p_{T,1}, p_{T,2})$ distributions are measured for the leading dijet pair

$$\geq \Delta \phi_{1,2} > \frac{7\pi}{8}$$
$$\geq |\eta| < 2.1$$

Corrected for combinatoric dijets using a $\Delta\phi_{1,2}$ sideband

Unfolded for detector effects using 2D Bayesian unfolding

Unfolded $\frac{dN_{pair}}{dp_{T,1}dp_{T,2}}$ distribution projected across selections of $p_{T,1}$ to extract $\frac{dN}{dx_J}$ distributions

Uncertainties on per dijet pair x_I distributions

In peripheral events the uncertainty from the jet energy scale and resolution are dominant ^{9/2022} Timothy Rinn 17

Dijet x_I observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$

 \succ Enables direct comparison of the x_I shape across centrality in Pb+Pb and in pp

Never Betore Measured Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_I}$

 \succ Enables evaluation of the dijet per event yields as a function of x_I

> Provides insight into the dynamics of dijet energy loss

Dijet x_J observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$

Enables direct comparison of the x_J shape across centrality in Pb+Pb and in pp

 Absolutely normalized x_J distributions: 1 N_{evt}⟨T_{AA}⟩ dN_{pair} dx_J

 Enables evaluation of the dijet per event yields as a function of x_J
 Provides insight into the dynamics of dijet energy loss

lever Before Meio

Higher p_T jets \rightarrow more collimated \rightarrow more balanced

Both results observe significant flattening of the peak structure with increasing leading jet $p_{T} \,$

Significant modifications from pp collisions observed even at the highest $p_{\mathrm{T,1}}$

 \succ Reproduces the x_J shape for intermediate and high $p_{T,1}$ in central events

LIDO does not reproduce the peak observed at intermediate x_J at low $p_{T,1}$

Dijet x_I observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{nair}} \frac{dN_{pair}}{dx_J}$

 \succ Enables direct comparison of the x_I shape across centrality in Pb+Pb and in pp

Never Betore Measured Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_I}$ \succ Enables evaluation of the dijet per event yields as a function of x_I

> Provides insight into the dynamics of dijet energy loss

Using a $\frac{1}{\langle T_{AA} \rangle N_{ent}}$ normalization enables the study of dijet yields as a function of x_I

The peak structure observed at intermediate x_I stems from the favorable suppression of symmetric dijets

No evidence for enhancement over *pp* of intermediate x_I

with CTEQL1 PDF used in LIDO

LIDO qualitatively predicts the depletion of symmetric dijets observed across $p_{\rm T,1}$

Significant suppression of symmetric dijets measured at the highest $p_{T,1}$

Dijet nuclear modification factor: R_{AA}^{pair}

 $R_{AA}^{pair}(\mathbf{p}_{T,1})$ quantifies the suppression of the **leading jet** in a dijet

 $R_{AA}^{pair}(p_{T,2})$ quantifies the suppression of the subleading jet in a dijet

Dijet threshold condition of $\frac{p_{T,2}}{p_{T,1}} > 0.32$

Subleading jets are systematically more suppressed than leading jets 4/19/2022 Timothy Rinn

 $R_{AA}^{pair}(p_{T,1})$ and $R_{AA}^{pair}(p_{T,2})$

Inclusive jet R_{AA} is sandwiched between leading and sub leading jets above 158 GeV

> Consistent with dijets dominating the inclusive jet spectrum

At low p_T the inclusive jet R_{AA} is above that of leading jets

Inclusive jets: <u>https://arxiv.org/abs/1805.05635</u>

Systematic suppression of subleading jets relative to leading jetshas been measured across event centrality

Centrality [%]

36

Evidence for suppression of subleading jets relative to leading jets is observed

> 3 σ significant relative suppression observed in peripheral Pb+Pb

LIDO calculations with a $\mu_{min} = 1.8$ well reproduces the measurement

Summary

Novel measurements of dijets in Pb+Pb collisions have been presented

- Measurements of the absolutely normalized x_J distributions provide evidence of preferable depletion of balanced dijets
- > Measurements of $R_{AA}^{pair}(p_{T,1})$ and $R_{AA}^{pair}(p_{T,2})$ quantify the suppression of leading and subleading jets
- > A 3σ suppression of subleading jets to leading jets is observed in peripheral Pb+Pb

backups

Notable deviations from pp is observed up through 60% central Pb+Pb events for 398 < $p_{\rm T,1}$ < 562 GeV

The inclusive jet R_{AA} above 150 GeV is bracketed by the $R_{AA}^{pair}(p_{T,1})$ and $R_{AA}^{pair}(p_{T,2})$

> Below 150 GeV the inclusive jet R_{AA} is consistent with the $R_{AA}^{pair}(p_{T,1})$