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Time
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Large Hadron Collider
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Detector at the LHC
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Particle Reconstruction

Go from detector deposits to particles
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Typical Collision
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Electron #1

Electron #2

Muon #1

Muon #2

Typical Collision



• To find something interesting we collide at a high rate 

- We collide collections of protons at 40 MHz 

• This equates to a PIPELINE Initiation Interval of 25ns  

• A single event is 8 Mb @ 40 MHz = 320 Tb/s
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Finding something?

Proton Bunches

25ns



• In addition to colliding at 40 MHz  

- We don’t just collide one proton at a time 

- We (currently) collide about 70 protons at a time (Pileup Collisions) 

• We have to pick out one collision on top of many overlapping collisions
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Higher Rates
70 overlapping  
collisions

A  Single Collision

200 overlapping  
collisions in future



• Higgs boson at very high energies
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What are we looking for now?

arxiv:2006.13251



• This topology is very simple  

- But has a huge amount of background 

- Corr is to build a deep learning algorithm to separate
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How to find the Higgs?

vs. 

Background Signal

Jet final states consist of many particles (perfect for deep learning)



• Sensitive to the Higgs at roughly 1 standard deviation
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A first attempt for Higgs

See a clear Z boson peak 

Convinced us that this approach 
could be used to push 
identification much tighter  

Measure tagger eff in-situ
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Deep Learning Progression

Images  
(not lorentz invariant)

Particles and SVs 
with 4-vectors+features

Particles  
(limited correlations) 

Graphs  
(Particles+correlations) 

2016 20202018

Progressively moving towards use of more info

Current collaboration results



• For a Higgs boson at high energy 

- We have to rely on deep learning 
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Difficulty of finding Higgs

2016 ML(BDT)

2019 M
L(RNN)

2020 M
L(G

raphNN)

• Deep learning is quickly leading to a major transformation 

- We can measure processes that we didn’t think possible
arxiv:1909.12285

2020 DL Arch



• Z boson sensitivity is dramatically improved (thnkas DNN)
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Higgs Boson Progression
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Deep Learning Evolution
quark/gluom 

aka Jet  
(cluster of particles)

Reconstruction flow
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Deep Learning Evolution
quark/gluom 

aka Jet  
(cluster of particles)

Reconstruction flow

Where we do analysis
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Deep Learning Evolution
quark/gluom 

aka Jet  
(cluster of particles)

Reconstruction flow

Deep Learning Migration
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Deep Learning Evolution
quark/gluom 

aka Jet  
(cluster of particles)

Reconstruction flow

Challenge:  
Can you go from Raw inputs to reco? 
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Deep Learning Evolution
quark/gluom 

aka Jet  
(cluster of particles)

Reconstruction flow

Challenge:  
Can you go from Raw inputs to reco? 



• Reconstructing a single calorimeter tower 

- FACILE Algorithm: Reconstruct integral of in-time pulse 

- Up to 5 overlapping pulse
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Simple Example

Simple NN 
Can run fast 

LeakyRelu  
Critical to regression



• Facile runs reconstruction on a single channel 

- We can envision an algorithm that takes in all channels 

- One way is to use a sparse CNN for graph-like inputs
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From Single to Collection

Cluster 1 

Cluster 2 

Sparse CNN 
inference

Sparse CNN 
inference

Calorimeter Energy Cluster

Calorimeter Energy Cluster

By taking the grid geometry of calorimeter can deploy Sparse CNN to Infer whole calo at once

η

φ



• A single algorithm is doing all of the clustering 
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Can compare to Reality

• Clustering algorithm produces very similar results to truth 

• Single algorithm that takes in whole detector at once

TruthSparse CNN



• A single algorithm is doing all of the clustering 
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So what do we gain?

• Moreover this algorithm can now look at whole event to perform clustering 

• Awarness of the event can allow for dynamic thresholds/interpretations 

• Finally, this algorithm is highly parallelize  Can Run it Fast!→

TruthSparse CNN Depth

By embedding this in a 
neural network 
we can extend algo to 
include more info 

This is 1st algorithm to 
cluster with depth info
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A more Extreme Example

• Algorithm effective a reconstructing new complex topologies

TruthSparse CNN Depth



• Electron and Photon energy regression with an NN 

- Raw inputs to make an NN gives significant improvements
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Another Example

Raw Inputs  
into an NN 

Previous  Version used pre-reconstructed variables based on raw inputs 
eg.  ⟨Δϕ2⟩crystals, ⟨Δη2⟩crystals
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• Networks are emerging to do calorimeter clustering

• Additionally networks are emerging to identify all objects

Clustering: Graph NNs for HGCAL 

Dynamic reduction 
network for 
EGamma 
regression

S. Rothman

Success of Deep Learning

ML PUPPI
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Success of Deep Learning

• First ideas of full particle based reconstruction are emerging 

• Tools are emerging to do particle reconstructeion in one go
arxiv:2101.08578
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Success of Deep Learning

• First ideas of full particle based reconstruction are emerging 

• LHC is a great place for DL because we have fantastic simulation
arxiv:2101.08578



29

Taking a Leap of Faith

Can we really trust AI to work from scratch well? always?
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Deep Learning
Runs 50x 
faster on  

a GPU

Runs 100x 
faster on  

a GPU

• We are building a number of algorithms with deep learning 

- These are quickly becoming part of LHC reconstruction algos 

• Additionally these algorithms run dramatically faster on GPUs 

- Incorporate GPUs within our existing compute workflows



• The LHC has topped out in energy 
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Where does this fit at LHC?

We still have 15 years of LHC running 
20x more data to come 



• Lack of higher energy beams means 

- Analyses focus on measurements with lots of data 

‣ These are often hard and precise measurements 

‣ Long term analyses are focus (ie. W mass) 

- Creative final states we ignored in the past 

‣ Rethinking the strategy to search for new physics 

‣ Finding events that we couldn’t in the past 

• There are an incredibly diverse set things to explore
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LHC Plan
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Looking for small signals

Before SelectionAfter Selection

There is still a wealth of unexplored physics at the LHC  
Its just a bit harder to find
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Looking for small signals

Before SelectionAfter Selection

There is still a wealth of unexplored physics at the LHC  
Its just a bit harder to find



What is different  
w/Left and Right?



The Need for Subtlety



The Need for Subtlety

These types of signatures are the most likely to explain dark matter 

Candidate



The Need for Subtlety

These types of signatures are the most likely to explain dark matter 

Candidate



• The LHC has been running for the past 10 years 

- We have made some remarkable discoveries: 

‣ Higgs Boson  

‣ Measurements of top quarks, W, Z bosons….. 

‣ Strong constraints on Dark Matter and New Physics 

• The times are changing:  

- We find ourselves doing more deep learning 

- We are also looking for harder to find signals
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Where are we now?



Think Fast 
(NN Inference)



40 MHz
Spanning Frequencies

1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards Select 1 event in 400 

The rest is thrown 
away Forever!

320 tb/s
Fast 

40 MHz Collisions 
10 µs window 
L1Trigger



40 MHz
Spanning Frequencies

1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards

Local CPU  
Cluster

Select 1 in 100

1 tb/s320 tb/s
Fast 

40 MHz Collisions 
10 µs window 
L1Trigger

Intermediate 
100 kHz Collisions 
<500 ms window 
High Level Trigger



40 MHz
Spanning Frequencies

1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards

Local CPU  
Cluster

CPU Grid

Fast 
40 MHz Collisions 
10 µs window 
L1Trigger

Intermediate 
100 kHz Collisions 
<500 ms window 
High Level Trigger

Slow 
1 kHz Collisions 
10 s window 
Offline Cluster

10 Gb/s1 tb/s320 tb/s



44

The Physicist View 

Keep KeepAll data

Fast Intermediate Slow
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The Physicist View 

We know that we are  
throwing away  
a lot of good data

Fast Intermediate Slow

!!!!!!!!!!!!!!!!!!



• There is a plethora of physics that we throw out
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Hidden  gems?

Higgs boson right on the 
cusp of being thrown out



• At the moment:


- We only get a full data of one in 40,000 collisions


- There is interesting physics that we have to throw away


• We would like to analyze every collision at the LHC


- To deal with this we need to increase our throughput


- Ultimately this means going to 100s of Tb/s
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The dream
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The Challenge

Today

After upgrade

Current 
Tech

• To deal with the upgraded LHC intensity 

• To preserve current physics we are upgrading the system 

- Our event size will have to be 10x larger 

- We will have to take data at 5 times the current rate

~T
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p*
Ye
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s

Results 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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The Crises
End of  
Dennard Scaling
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Processor Technology
Will we be able to handle the future upgrades? 



51



52

Processing Tech
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Processing Tech



40 MHz 1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards

Local CPU  
Cluster

CPU Grid

10 Gb/s1 tb/s320 tb/s

Real-time AI on every LHC Collisions
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Current (Old) Tech

 Current System is roughly 100 Virtex7 FPGAs  
interconnected with Fibers

480 Gb/s Input 
48x10Gb/s Fibers

…. ….

600 Gb/s Input 
60x10Gb/s Fibers

1 µs

1 µs

FPGA

FPGA

FPGA FPGA FPGA
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Current Algos
Simultaneously scan  
over calorimeter region a  
very simple algorithm 

FPGA is essential to  
parallelize & deal w/
enormous bandwidth  

Algorithms have traditionally been simple  
due to the size of the FPGAs + RTL code

Algo



57

Rethinking the Algos

Process information object by object

+

Track Ecal 
Cluster

Charged 
Hadron

Calo 
Cluster

+ =

No More Grid  
of Information

Reference 

https://cds.cern.ch/record/2714892?ln=en
https://cds.cern.ch/record/2714892?ln=en
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High Level Synthesis

• Designing complex algorithms on FPGAs 

- Needed an approach to design/understand complex algos  

- We also wanted to be sure to capture the physics 

- As physicists, we prefer writing code in c++ 

• HLS has given us the possibility to develop algorithms quickly 

- Allows for fast turn around to deployment of algorithms
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How does this fit?
An important element of the design flow  
Make individual blocks small enough to fit on one die (SLR) 
Crossing SLRs is slow 



• We only have 1µs or less for the inference time 

- We need to run the networks at a rate > 40 MHz (II < 25ns) 

- Forced us to re-think DNN hardware implementations 

• This work led us to the project: 
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Real-Time Deep Learning

arxiv:1804.06913

S. Han
D. Rankin
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Matrix Mult in Math

A1

A2

O1

φ(A1W11+A2W21+B1)=O1

How can we parallelize this?

Activation function
Matrix Multiplication

Vector Addition

Vector

arxiv:1804.06913
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Matrix Mult in Math

A1

A2

O1

How can we parallelize this?

Vector
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Matrix Mult in an FPGA

A1W11 
A2W21 

B1

 =O1
Add Add

Mult

A1

A2
φ(     )

Clock #1 Clock #2 Clock #3

Multiplier Units  
  (DSP) LUTs/FF  Look up Table 

A1

A2

Next vector of inputs  
  (1 clock later) 3 Clock algorithm

Results subject to precision outputs
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A full benchmark example
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This network has an II of 1 clock, being run constantly 
It has 4.3k weights and 4.3k DSPs at II=1

75ns
Hadronic Jet Tagger
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A full benchmark example
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r 3
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This network has an II of 1 clock, being run constantly 
It has 4.3k weights and 4.3k DSPs at II=1

75ns
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How can we reduce resources?
Focus on 3 ways to cut down resources

Is our algorithm  
overly complex?

Are we too 
precise?

Does it really need 
to be this fast?

arxiv:1804.06913
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Algorithm Compression
● Compression is a critical aspect to reduce ML 
● A suprising amount of weights in an NN are irrelevant

arxiv:1804.06913

Model Mult(DSP) LUTs
Before 15% 13%
After 0% 1%

Same Performance  
Smaller Latency (50 40ns) 
Dramatic Compression

→
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Quantization

 <Total bit width, integer bits above decimal>
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Algorithm Compression

arxiv:2103.05579

Fixed precision training 
Weight pruning shrinks 
networks
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A Compiler than can do it

https://fastmachinelearning.org/hls4ml/ 
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There are now a few tools 
See Tae Min’s Talk for another tool!
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Specs for 
an FPGA 

Latency/ 
Resources/ 
Precision/ 
Configure 

The  Code 
to Run it

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
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Summing Up the Data flow

https://fastmachinelearning.org/hls4ml/ 

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/


• Many different types of collisions are analyzed at LHC 

- A diverse set of algorithms are required  

- There is no one size fits all NN that will solver our problems 

• With HLS4ML we have continued to expand options 

- HLS has allowed for quick development 
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Flexibility

MLPs

Algorithms

CNNs

Binary & Ternary NNs
RNNs(LSTM/GRU)

Graph NNs(MPNN/GravNet/GarNet)

BDTs

Backends
Xilinx Vitis HLS
Intel HLS Quertus

Intel OneAPI
Mentor Catapult HLS

Not yet in official releaseNot yet in official release

arxiv:2003.06308  
arxiv:2002.02534  
arxiv:2008.03601 
arxiv:2006.10159  
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Example #1 Tau Tagging
Tau Leptons have complex final states

Neural Network has long been the 
algorithm of choice to identify Taus

π

γ
π from another 

decay

Tau Lepton can decay to as many as 
10 different particles  
Background can decay to many more
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Example #1 Tau Tagging
Algorithm Takes 10 top particles in a cone and runs NN

π

γ
π from another 

decay

Whole Algorithm on Board

With HLS4ML we can run this algorithm in 70ns

VU9P DSP FF LUTs BRAM

NNTau 11% 12% 18% 16%
NN alone is <10% of the FPGA 

Whole Algorithm Resources

NN Algorithm
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Example #2  BTagging
π

γ
π from another 

decay

µ

π

ΒJet is  
displaced

In addition to taus  
B-tagging good ML candidate 

Not obvious CMS Trigger  
vertex resolution is large
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Example #2  BTagging
π

γ
π from another 

decay

µ

π

ΒJet is  
displaced

In addition to taus  
B-tagging good ML candidate 

Not obvious CMS Trigger  
vertex resolution is large

Hard 
Resolution in Trigger is worse

+

Di Higgs Boson Production Higgs Self Coupling Term

Interference
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Example #2  BTagging
π

γ
π from another 

decay

µ

π

ΒJet is  
displaced

In addition to taus  
B-tagging good ML candidate 

Not obvious CMS Trigger  
vertex resolution is large

Hard 
Resolution in Trigger is worse

Critical  Region  
For Self Coupling



• HLS4ML is rapidly being adopted in our trigger system 

- Will be used in the next running at the LHC 

• We already see a number of substantial improvement
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Accomplishments

2-5 times More Higgs bosons with the same data rates



• HLS4ML differs from other ML models

79Other Deep Learning 
Models

Matrix Multiply

Layer #2

Layer #N

Layer #1

….

One Processor

Big flexible layer

One Processor

Other approaches 
(eg. Xilinx ML Suite)

Good for very large models  
where you can’t fit the whole 

algorithm on the processor logic

Good for small models where  
you need ultra low latency 
and ultra high throughput 

HLS4ML/FINN/…



• GPU is about even more standardization
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How does a GPU do this?

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

…..

…..

Great for many  
many  

evaluations 
of a big network 

Not Great for  
a small network



+

Running @ 
Longer latencies



40 MHz
HLT Trigger+Offline Reco

1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards

Local CPU  
Cluster

CPU Grid

Both Tiers are CPU 
similar algos(different scales) 

D. Rankin

J. Krupa
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What we learned?

Algo Per Event

CPU 1.75s

GPU Batch 1 7ms

GPU Batch 32 2ms

FPGA 1.7ms

1000x

arxiv:1904.08986

Top QuarksBackground Jets

CNN using Resnet50 Arch
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What does this mean?

CPU

CPU CPU

CPUCPU

CPU

Process event by event 

CPUCPU
CPU

CPU

CPU

CPU

FPGA 
/GPU

Cloud

Process (event by event)? 
outsource specific algorithms 

FPGA/GPU as a service (aas)

arxiv:1904.08986



Deploying on a GPU
85

Process event by event

Event

Input
Ti

Algo 1
X

Output
To

arxiv:1904.08986



Deploying on a GPU
86

Event

Input
Ti

Output
To

GPU 
or  

FPGA
Algo 1

Reduced 
Latency

arxiv:1904.08986

Process event by event



Deploying on a GPU
87

Event

Input
Ti

Output
To

GPU 
or  

FPGA
Algo 1

Reduced 
Latency

arxiv:1904.08986

Input
Ti To

Output
Asynchronous  

Scheduler

Asynchronicity allows for longer wait times

Process event by event



Integrating with cloud
88

Event

Input
Ti

Output
To

GPU 
or  

FPGA
Algo 1

Reduced 
Latency

Input
Ti To

Output

SONIC 
Services for Optimized Network Inference on Coprocessors

• Services for Optimized Network Inference on Coprocessors

o Convert experimental data to neural network input,
send to coprocessor using communication protocol

o Use ExternalWork mechanism for asynchronous, non-blocking requests

• SonicCMS repository on GitHub

o Currently supports gRPC w/ TensorFlow

• Performance metrics:

o Latency (time for a single request to complete)

o Throughput (number of requests per unit time)

SONIC for CMS

8CHEP 2019 Kevin Pedro

External 
processing

CMSSW 
thread

acquire()

FPGA, 
GPU, etc.

produce()(other work)



Integrating with cloud
89

Event

Input
Ti

Output
To

GPU 
or  

FPGA
Algo 1

Reduced 
Latency

arxiv:1904.08986

Input
Ti To

Output

gRPC servers:  FPGA-as-a-service Toolkit (FAAST) 
w/Xilinx ML Suite/HLS4ML/… or

arxiv:1904.08986

SONIC 
Services for Optimized Network Inference on Coprocessors



Algorithm Accelerator Time

Nominal None 60 ms

FACILE GPU 2 ms*

FACILE FPGA 0.1 ms* Be
tte

r
Nominal

FACILE

MC Preliminary
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Case Study
Deep Neural Network that 
reconstructs energy deposits

Applied to 16k (Batch) Channels
Run at batch 1 on FPGA
II=2 Clocks (8 ns)

FPGA is on SLR of an Xilinx Alveo U250

Reconstructing this detector



google  
VMs

V100 GPU  
on GCP
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10% Reduction in total HLT 
out of a 11% possible reduction in time

-10%

One GPU can handle  400 Cores (HLT is 25k)

GPU (V100)

arxiv:2007.10359



AWS VMs AWS f1s

92

-10%

One FPGA can handle  1600 Cores

In fact the limit here is not from the FPGA its network (25 Gbps)

10% Reduction in total HLT 
out of a 11% possible reduction in time

FPGA (f1)

arxiv:2010.08556



93

Limit without 25 Gbps  is actually at 5500 simultaneous processes

That means 6 FPGAs can reduce 30k core system by 10%!

AWS VMs AWS f1s

Actual FPGA limit (f1)

arxiv:2010.08556



• In addition we have been able to run this work to scale

94

Running To Scale 

By Using Google Cloud
Sped up 3 algos 
currently in use gave 
15% reco speedup



• In addition we have been able to run this work to scale 

- Ran a test with 10000 CPU cores and 150 GPUs 

- Processes a realistic 150 TB sample  

- Demonstrated this paradigm works to scale!

95

Running To Scale 
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Other Algos

Algo Batch/Event CPU GPU FPGA

Hcal (Prev Slides) 16000 60ms(16ms) 2ms 0.2ms

Electron Id 5 75ms 0.1ms <1ms(tbd)

Top Quark(resnet50) <1 1500ms 1.2ms 1.5ms

Like the physics events: there is a wide variety of algorithms 

Small algorithms can benefit from optimizations on FPGA 

Larger algorithms+slower inference times GPUs start to work well

We have considered a broad range of algorithms

At Large batch(saturated)

arxiv:2007.10359



40 MHz 1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards

Local CPU  
Cluster

CPU Grid

10 Gb/s1 tb/s320 tb/s

A Broader Vision of DAQ



40 MHz 1 kHz
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Radiation  
Hard ASICs

FPGA 
Boards

Local CPU  
Cluster

CPU Grid

10 Gb/s1 tb/s320 tb/s

A Broader Vision of DAQ

Accelerator
Accelerator
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A Broader Vision of DAQ
40 MHz 100 kHz

Radiation  
Hard ASICs

FPGA 
Boards

Now Lets Zoom In  
on our system 
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A Broader Vision of DAQ
40 MHz 100 kHz

Radiation  
Hard ASICs

FPGA 
Boards

And Reconfigure it
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A Broader Vision of DAQ
40 MHz 100 kHz

Radiation  
Hard ASICs

FPGA 
Boards

What can we do if we go from 
Our FPGA system to accelerators? 

Throttle between 100kHz-40 MHz



AIgean

P. Chow N. Tarafdar



• What if we combine the two show concepts?
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Combining Ideas

+
Fast Distributed  Deep  

Learning Networks

Galapagos

Open Source Tool to  
talk to FPGAs Directly over 

Network  
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AIgean
N
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With AIgean we can stretch out networks across many FPGAs 
100 Gb/s protocol between FPGAs ( can go to CPUs)

This allows us to run inference for very large networks 
  

Very Fast

Tune our network to the resources we have

FPGA FPGA FPGA
BridgeBridge BridgeBridge BridgeBridge
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Example Autoencoder
Anomaly detection algorithm

80 µs latency

Pipeline Interval

2.8µs

Pipeline Interval

>5.6µs

260 µs latency

One 
FPGA

One 
GPU

2.5 ms latency
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Resnet-50

All Resnet50 layers

Resources Alveo U250(%) ZU19EG(%)

DSP: 9475 0.77 4.99

LUT: 2895351 1.68 5.55

FF: 4952884 1.43 4.76

8bit Resnet50 with a throughput of 1.5ms

Partitioned onto 9 ZU19EG FPGAs 
  packed resources would fit 6 

We can compile networks  
over MANY FPGAs
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Use Cases?

• A new paradigm of computing 


• Unroll the whole network across many processors


• Single inference (batch 1) latencies well beyond GPUs


• Natural way to link CPUs and FPGAs together


• Can start to envision a new paradigm of LHC Data Acquisition


• Lots of room to explore! OpenSource



• Aiming to identify Gravitatoinal waves fast to do MMA


• Correlating GW and Optical observations is powerful
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Gravitational Waves

Can we make the GW reconstruction fast enough to be real-time?

See a Gravitational Wave Alert a Telescope



Multi Messeng Astro

https://fastmachinelearning.org/ 

https://fastmachinelearning.org/
https://fastmachinelearning.org/


Multi Messenger Astro

https://fastmachinelearning.org/ 

Use This

Alert These

E. Katsavounidis A.Gunny 

T. Nguyen 

https://fastmachinelearning.org/
https://fastmachinelearning.org/
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Gravitational Waves

Neutron Star Merger

How fast can we find a signal?
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Arsenal of telescopes

Once you have found the GW event   
have to send the coordinates to a huge network
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Currently it takes a while to get a good signature
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How do we do it Fast?
Raw

Cleaned

Signal

Pr
oc

es
si

ng
Preliminary



• E. Katsavounids, T. Nguyen have developed a denoising DNN


• Algorithm is an effective AE with conv1d inputs (time series)


• Lots of room for expansion of project
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Cleaning the Data
arxiv/2005.06534



• DeepClean performs at the same level as Wiener Filter


• DeepClean can deal with non-linear correlations

117

Cleaning the Data
arxiv/2005.06534
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Identifying Gravitational Waves

GPU: 0.5ms  
FPGA:0.1ms

Currently have a preliminary result on fast BBH detection

Preliminary



• Actively building an AI alert system to be deployed at LIGO
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Gravitational Waves

x1000 reduction in overall throughput

Developed AI-based 
Denoising and  
BBH detection

Constructed a  
GPU-as-a-service  
integration for  
GW low latency alerts



• An institute to unite real-time AI 

- Quickly looking for people to be part of extended team

120

A3D3



• We have been awarded a new institute to explore real-time AI 

- Accelerated AI Algorithms for Data Driven Discovery (A3D3)
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LIGO

N
ew

 T
yp

es
 o

f C
om

pu
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• We are pursuing the same idea in Neutrino physics
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Neutrino Physics

Michel Electron Id NN Large Factor in speed up
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Overview Venn Diagram

IAIFI  

Fast Machine Learning Lab

Proto 
DUNE

Real-Time  
Heavy Flavor 

Tagging @ sPHENIX

AI based compression 
For Silicon calorimeter 
Readout (DOE ASCR)

Real-time Multi-messenger 
Alert

Exploring Clouds 
to Accelerate Science

AI Algorithms 
(AI2)
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Preparing for the future
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Who are we? 

• Project started by adapting deep neural networks to LHC data flow


• Collaboration is now > 100 members at 10 institutes (2 years old)


• Our aim : bring the fastest machine learning to science 

Fast ML Collaboration 
meeting+School

https://fastmachinelearning.org/

https://fastmachinelearning.org/
https://fastmachinelearning.org/


Here
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Conclusions
Real time deep learning

In science has the potential to open new doors



Thanks!
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Fast ML Team
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Right Brain

This is a story of  
an IAIFI Collaboration
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CTP 2019

IAIFI Prep Meetings
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Stuck on a Problem

If you can make an inclusive 
Higgs boson measurement 

Can measure the total width

How do you search for every final state at once? 



• Data analyses at the LHC are changing 

- Analyses are becoming much more complex 

‣ Many categories and many final states  

• General trend towards more complicated analyses
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Ageing Analyses @LHC

103 Categories

Higgs @ 
Discovery

1 Category
Higgs  
Now



• The power of computing 

- Complex many parameter fits run much faster these days 

- Newer optimization strategies that are proven to be robust 

- Along with the ease of use of complex fitting tools 

‣ Many tools now auto build likelihood and minimize 

• A better understanding of our simulation 

- Many processes are understood  

- Steps to making categories has become progressively simpler 

• Encroaching on a general philosophy to do more in one swoop
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What has caused trend?



• Some old ideas are starting to be taken more seriously 

- Can we perform analyses on a broad range of data at once
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From this trend
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The Latent Space

What comes out of latent  
space can be a mystery

Latent space aims to organize 
the information  

Normalizing Flow allow for  
adaptive capture of physics
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One-Shot Learning

Normalizing  
Flow Similar

Our idea:  
Normalizing Flow to build 
a latent space of physics objects

One-shot learning aims to build a space of similar objects



• Can we search for an arbitrary signal and find it?  

• There was a recent challenge to look at this:  

- LHC Olympics 2020
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Towards Having it all

+

Black Box



• Anomaly Strategies at LHC fall into two categories
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Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?



• Anomaly Strategies at LHC fall into two categories
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Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?

AutoencodersWeakly-Supervised

A

B

Classification W/O LAbels
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Performance Observations
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Performance Observations

Is there  a  
way to enhance 
signal at low S/B?
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Background Loss
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Method 2

E
ve

nt
s

Duck Duck Goose!
Search all of the regions one big simultaneous fit 
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Seeing a Signal

BlackBox 1
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Seeing a Signal
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Applying to  Anomaly
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How Close to Optimal?

Better

QUAK can outperform a supervised network 
When signals are the same
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One QUAK Network  One Supervised Network

How Close to Optimal?

Better



• Like to think this is a harbinger for things to come
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What will the future be?

Did we find all the  
Higgs bosons in there?

What are all the hidden  
signals in there? 

Towards 
The  
Future
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and Can we do it Real-time?

Can we see it all? When its coming? 



Here
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Conclusions
Real time deep learning

In science has the potential to open new doors



Thanks!
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Fast ML Team


