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Preliminaries
• The EIC physics program includes reconstruction of final states with very far-

forward protons, from many different possible collision systems.
• e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup)
• Produces protons with a broad range in longitudinal momentum, which then traverse the 

full hadron-going lattice (dipoles and quads).
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The problem: The lattice is still evolving, and things may change. Additionally, the friends from 
physics are not accelerator experts. Therefore, we need a way to be “self-sufficient” in the short-
term to get the matrices using our simulation codes (e.g. GEANT).
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The problem: The lattice is still evolving, and things may change. Additionally, the friends from 
physics are not accelerator experts. Therefore, we need a way to be “self-sufficient” in the short-
term to get the matrices using our simulation codes (e.g. GEANT).
ü We know from previous exhaustive studies that GEANT and BMAD agree quite well in

describing the orbits, so this is really not a “problem” as far as evaluating performance of the 
lattice + detectors.



Digression: Basic approach
• Use a matrix which describes the transport of a charged particle trajectory 

through the magnet lattice.
• Matrix unique for different positions along the beam-axis!
• Transforms coordinates at detectors (position, angle) to original IP coordinates.

(𝑥!"#.,𝑦!"#.)(𝑥&',𝑦&')
𝑀( 𝑀) 𝑀*

𝑀#+,-./"+ = 𝑀(𝑀)𝑀*… Can represent full lattice with a single “transfer matrix” 
(also called ”transfer map”).
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1.88481537 28.96766544 0.0000 0.0000 0.0000 0.24906255
−0.02114673 0.20555261 0.0000 0.0000 0.0000 −0.03322467

0.0000 0.0000 −2.25541901 3.78031509 0.0000 0.0000
0.0000 0.0000 −0.17782524 −0.14532313 0.0000 0.0000

0.05735551 1.01363652 0.0000 0.0000 1.0000 0.02568709
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

𝑥01
𝜃201
𝑦01
𝜃301
𝑧01
Δ𝑝/𝑝

=

𝑥)45
𝜃2,)45
𝑦)45
𝜃3)45
𝑧)45
Δ𝑝/𝑝

IP6 Transfer Matrix for Roman Pots (s = 28m: central trajectory)

• Using: tracking_method = fixed_step_runge_kutta, mat6_calc_method = Tracking
• This forces BMAD to not use the ideal equation calculations, but to instead ”track” 6 particles through the lattice, similar to

the way we do it in GEANT.
• Note: the detector values (RHS column vector) are assumed to be in the coordinate system local to the particle orbit 

reference – this means you must calculate offset values for the reference orbit and use them in every subsequent calculation.

𝑥)65, 𝑦)65
𝑥)45, 𝑦)45

𝜃2,)45, 𝜃3,)45

(1.88)𝑥01+ 28.97 𝜃201 + 0.249
Δ𝑝
𝑝 = 𝑥)45

−0.0211 𝑥01 + 0.206 𝜃201 + −0.033
Δ𝑝
𝑝 = 𝜃2,)45

From BMAD!

RP station 1 RP station 2
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… Etc.
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𝒍𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍 𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏

𝒙𝑳 =
𝒑𝒛,𝒑𝒓𝒐𝒕𝒐𝒏
𝒑𝒛,𝒃𝒆𝒂𝒎 For a 275 GeV beam, a 270 GeV 

proton has an xL of 0.98.

IP6 Transfer Matrix for Roman Pots (s = 28m: central trajectory)



The Basic Method
• Begin with a set of “input tuning cards” which contain the trajectories 

for calculating the matrices.
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xL = 1.0

xL = 0.97

xL = 0.95

…

Matrix 
calculation 
code.

6x6 matrix + orbit 
offsets for xL = 1.0

6x6 matrix + orbit 
offsets for xL = 0.97

6x6 matrix + orbit 
offsets for xL = 0.95

…
Matrix parameter 
fitting code.

tuning cards

GEANT 
simulation.

Magnets (fields, bores, etc.)

G4 magnetic field stepping 
parameters and numerical method.

Hits in RP.



The Basic Method
• Plot the 36 matrix values (and 4 offsets) as a function of xL.

• Fit the resulting plots with 2nd-degree polynomials.
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• The 40 fit functions (36 matrix 
parameters + 4 offsets) then 
represent the ingredients to 
calculate the needed matrix in 
real-time at reconstruction.

• All that is needed is a lookup
table to get the xL value for an
event based on the coordinates at
the Roman Pots.

1.88481537 28.96766544 0.0000 0.0000 0.0000 0.24906255
−0.02114673 0.20555261 0.0000 0.0000 0.0000 −0.03322467

0.0000 0.0000 −2.25541901 3.78031509 0.0000 0.0000
0.0000 0.0000 −0.17782524 −0.14532313 0.0000 0.0000

0.05735551 1.01363652 0.0000 0.0000 1.0000 0.02568709
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000



The Basic Method
• Extract xL value from lookup table for the 𝜃!,#$, 𝑥#$ ordered pair.
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• “Chromaticity plot” serves as a 
lookup table to use RP 
coordinates to find the xL value.

• xL is then used to evaluate the
correct matrix for reconstruction.

xL
> 0

.9

0.
8 

< 
xL

> 
0.
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• Now we can “build” the correct matrix with the correct offset values 
for a given trajectory and perform our kinematic reconstruction.
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The Basic Method

Detector “hit” 
coordinates

Lookup xL Calculate matrix parameters 
and offsets from fit equations.

Reconstructed 
momentum vector.
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−0.02114673 0.20555261 0.0000 0.0000 0.0000 −0.03322467

0.0000 0.0000 −2.25541901 3.78031509 0.0000 0.0000
0.0000 0.0000 −0.17782524 −0.14532313 0.0000 0.0000

0.05735551 1.01363652 0.0000 0.0000 1.0000 0.02568709
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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Takeaways and Next Steps
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• General approach for accurately reconstructing far-forward particles over a broad range in xL
now working.

• Some improvements are needed in calculating some of the matrix elements more accurately.
• Need to tinker with magnetic field tracking step parameters in GEANT -> refinement.

• Need to extend this approach to the off-momentum detectors.
• More-challenging problem – particles more severely off-momentum (xL ~ 50%).
• Hope to have results/updates soon.

• Once a software framework is established for the detector 1 collaboration, I will integrate this 
approach into a package in the framework so people can use it.


