Probing the QCD Phase Diagram via Higher Order Net-particle Fluctuation Measurements from STAR-BES

Ashish Pandav for the STAR Collaboration
National Institute of Science Education and Research, HBNI, India

Outline
1. Introduction
2. Physics Motivation
3. Data Analysis
4. Results

From RHIC to EIC
At the QCD Frontiers
June 7-10, 2022

In part supported by
Introduction: QCD Phase Diagram

Goal: Study the phase diagram of QCD.
Introduction: QCD Phase Diagram

Goal: Study the phase diagram of QCD.

Is there a critical point?

B. Mohanty, N. Xu, arXiv:2101.09210
A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)
Introduction: QCD Phase Diagram

Goal: Study the phase diagram of QCD.

Is there a critical point?
To what extent is the crossover in $T - \mu_B$ plane?
Is there a first-order transition at finite μ_B?

B. Mohanty, N. Xu, arXiv:2101.09210
A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)
Goal: Study the phase diagram of QCD.

Varying collision energy varies Temperature (T) and Baryon Chemical Potential (μ_B). Fluctuations in various observables are sensitive to phase transition and critical point.
Higher order cumulants of net-proton distributions (proxy for net-baryon).

\[C_1 = < N > \]
\[C_2 = < (\delta N)^2 > \]
\[C_3 = < (\delta N)^3 > \]

Here, \(\delta N = N - < N > \)

\[C_4 = < (\delta N)^4 > - 3 < (\delta N)^2 >^2 \]
\[C_5 = < (\delta N)^5 > - 10 < (\delta N)^3 > < (\delta N)^2 > \]
\[C_6 = < (\delta N)^6 > - 15 < (\delta N)^4 > < (\delta N)^2 > - 10 < (\delta N)^3 >^2 + 30 < (\delta N)^2 >^3 \]

Higher order cumulants: sensitive probe for CP and the nature of phase transition.

\[C_2 \sim \xi^2 \quad C_4 \sim \xi^7 \quad \text{*Quantitative numbers - Model dependent} \]

\[\frac{\chi_q^{(4)}}{\chi_q^{(2)}} = \kappa \sigma^2 = \frac{C_{4,q}}{C_{2,q}} \quad \frac{\chi_q^{(3)}}{\chi_q^{(2)}} = S \sigma = \frac{C_{3,q}}{C_{2,q}} \]

Search for CP

Non-monotonic energy dependence of kurtosis of net-proton in presence of CP

Observables

Higher order cumulants of net-proton distributions (proxy for net-baryon).

\[C_1 = \langle N \rangle \]
\[C_2 = \langle (\delta N)^2 \rangle \]
\[C_3 = \langle (\delta N)^3 \rangle \]
\[C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \]
\[C_5 = \langle (\delta N)^5 \rangle - 10 \langle (\delta N)^3 \rangle \times \langle (\delta N)^2 \rangle \]
\[C_6 = \langle (\delta N)^6 \rangle - 15 \langle (\delta N)^4 \rangle \times \langle (\delta N)^2 \rangle - 10 \langle (\delta N)^3 \rangle^2 + 30 \langle (\delta N)^2 \rangle^3 \]

Higher order cumulants: sensitive probe for CP and the nature of phase transition.

Search for CP

\[C_2 \sim \xi^2 \quad C_4 \sim \xi^7 \]

*Quantitative numbers - Model dependent

\[\frac{\chi_q^{(4)}}{\chi_q^{(2)}} = \kappa \sigma^2 = \frac{C_{4,q}}{C_{2,q}} \]
\[\frac{\chi_q^{(3)}}{\chi_q^{(2)}} = S \sigma = \frac{C_{3,q}}{C_{2,q}} \]

Goal: Identification of O(4) chiral criticality on the phase boundary.

\[C_5, C_6: \text{negative for LQCD, FRG, PQM – crossover} \]
\[C_5, C_6: \text{positive for HRG and UrQMD (No QCD transition)} \]

Ordering of ratios: \[\frac{C_3}{C_1} > \frac{C_4}{C_2} > \frac{C_5}{C_1} > \frac{C_6}{C_2} \] - LQCD, FRG

Search for First-order Phase Transition

Multiplicity distribution becomes bi-modal (contribution from two phases)

Proton factorial cumulants κ_n: with increasing order, increase rapidly in magnitude with alternating sign

$$
\begin{align*}
\kappa_1 &= C_1 \\
\kappa_2 &= -C_1 + C_2 \\
\kappa_3 &= 2C_1 - 3C_2 + C_3 \\
\kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4 \\
\kappa_5 &= 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5 \\
\kappa_6 &= -120C_1 + 274C_2 - 225C_3 + \\
&\quad 85C_4 - 15C_5 + C_6
\end{align*}
$$

$P(N) = (1 - \alpha)P_a(N) + \alpha P_b(N)$: Two Component/Bimodal Distribution
Analysis Procedure

1/ Event Selection

3/ Track selection and PID

5/ Calculate Cumulants

7/ Correct for Centrality Bin Width Effect

2/ Centrality Selection

4/ Construct Multiplicity Distributions

6/ Correct for Efficiency

8/ Compute Statistical Errors

9/ Compute Systematic Errors

10/ Comparison with models
Goal: to map the QCD phase diagram $20 < \mu_B < 750$ MeV

J. Cleymans et. al, PRC. 73, 034905 (2006)
1) Net-proton distributions, top 5% central collisions, efficiency uncorrected.
2) Values of the mean increase as energy decreases, effect of baryon stopping. Larger width \rightarrow larger stat. errors: $\text{err}(C_r) \propto \frac{\sigma^r}{\sqrt{N_{\text{evts}}}}$
Analysis Techniques (Corrections and Uncertainties)

- **Reconstruction efficiency**

![Graph showing reconstruction efficiency vs. average number of participant nucleons.](image)

- **Statistical uncertainties:**
 - Bootstrap method

- **Sources of systematic uncertainties:**
 - Particle identification
 - Background estimates (DCA)
 - Track quality cuts
 - Efficiency variation

- **Centrality bin width correction**

\[C_n = \sum_r w_r C_{n,r} \text{ where } w_r = n_r / \sum_r n_r, \ n=1,2,3,4... \]

Here, \(n_r \) is no. of events in \(r^{th} \) multiplicity bin

Net-proton Cumulant Measurements

Cumulants C_1 and C_3 decrease with collision energy for 0-5% centrality.

C_2 and C_4 (0-5%) show non-monotonic collision energy dependence.

Peripheral measurements close to zero.
Measurements and QCD Thermodynamics

Ordering of ratios (Net-baryon): \(\frac{C_3}{C_1} > \frac{C_4}{C_2} > \frac{C_5}{C_1} > \frac{C_6}{C_2} \) - LQCD, FRG

Within uncertainties, experimental data consistent with predicted hierarchy.

UrQMD does not follow the ordering. Positive for all the ratios.
Net-Proton C_4/C_2 – CP Search

Non-monotonic collision energy dependence observed.

UrQMD model fails to reproduce the observed non-monotonic dependence.

STAR: PRL 126, 092301 (2021)
STAR: PRL. 128, 202303 (2022)
Net-Proton C_4/C_2 – CP Search

Non-monotonic collision energy dependence observed.

Precision measurements in the range: $7.7 < \sqrt{s_{NN}} < 27$ GeV ongoing at BES-II

the observed non-monotonic dependence.

STAR: PRL 126, 092301 (2021)
STAR: PRL. 128, 202303 (2022)
Net-Proton C_4/C_2 – CP Search

Non-monotonic collision energy dependence observed.

Precision measurements in the range: $7.7 < \sqrt{s_{NN}} < 27$ GeV ongoing at BES-II.

New measurement at 3 GeV ($\mu_B=720$ MeV).

Consistent with UrQMD.

QCD matter is hadronic at 3 GeV.

If CP exists, it exists at $\sqrt{s_{NN}} > 3$ GeV.

Most Central Au+Au collisions
Net-proton
$0.4 < p_T < 2.0$ GeV/c, $|y| < 0.5$

HADES, Proton
$(0.4 < p_T < 1.6$ GeV/c, $|y| < 0.4)$

STAR Data
Projected BES-II
stat. uncertainty

Collision Energy $\sqrt{s_{NN}}$ (GeV)
Net-Proton C_4/C_2 – CP Search

Net-charge

Net-kaon

No such non-monotonic trend observed.

Large uncertainties.

Precision measurement at BES-II needed.

If CP exists, it exists at $\sqrt{s_{NN}} > 3$ GeV.
Net-Proton C_5/C_1 and C_6/C_2 – Search for Crossover

- $C_5/C_1 (0-40\%)$ fluctuates around zero as a function of $\sqrt{s_{NN}}$. $C_6/C_2 (0-40\%)$ increasingly negative with decreasing $\sqrt{s_{NN}}$ - consistent with expectation from LQCD, FRG model.
- Peripheral data, UrQMD, HRG model calculation are positive or consistent with zero.
Zr+Zr and Ru+Ru data follows the multiplicity trend shown by p+p and Au+Au.

Cumulant ratios decrease with increasing multiplicity. C_5/C_1 and C_6/C_2 from Au+Au results becomes negative: consistent with LQCD.
Proton κ_5 and κ_6 – Search for First-order Phase Transition

- κ_5 (0-5%) consistent with two component model expectation within uncertainties while κ_6 (0-5%) remains 1.8σ away.
Summary and Outlook

- Higher-order cumulants are important observable in the study of QCD phase structure. Sensitive to CP, crossover and first-order phase transition.

- Net-proton cumulant ratios seem to follow hierarchy predicted by QCD thermodynamics.

- Non-monotonic collision energy dependence observed for net-proton C_4/C_2. Hint of CP in the collision energy range $7.7 \leq \sqrt{s_{NN}} \leq 27$ GeV. Recent data at 3 GeV suggests QCD matter is hadronic at such low energies, indicating that if critical region is created in heavy-ion collisions, it should exist at $\sqrt{s_{NN}} > 3$ GeV.

- Net-proton C_6/C_2 is increasingly negative with decreasing $\sqrt{s_{NN}}$. Multiplicity dependence studies at $\sqrt{s_{NN}} = 200$ GeV suggest C_6/C_2 becomes negative with increasing multiplicity. Observations are consistent with sign predicted by lattice QCD for crossover.

- Proton κ_n measurement at 7.7 GeV have large uncertainties. Precision measurements at low $\sqrt{s_{NN}}$ from BES-II will be interesting for the search of first-order phase transition.

- Measurements with high statistic BES-II data (~10 – 20 times of current statistics) ongoing.
BES-II at RHIC

High statistics collected for $\sqrt{s_{NN}} = 7.7 - 27$ GeV: Precision measurement

STAR FXT: Extend precision measurements to $\mu_B=750$ MeV

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Events (10^6)</th>
<th>μ_B (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>101</td>
<td>420</td>
</tr>
<tr>
<td>9.2</td>
<td>162</td>
<td>355</td>
</tr>
<tr>
<td>11.5</td>
<td>235</td>
<td>315</td>
</tr>
<tr>
<td>14.5</td>
<td>324</td>
<td>264</td>
</tr>
<tr>
<td>17.3</td>
<td>256</td>
<td>230</td>
</tr>
<tr>
<td>19.6</td>
<td>478</td>
<td>206</td>
</tr>
<tr>
<td>27</td>
<td>555</td>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Events (10^6)</th>
<th>μ_B (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>163</td>
<td>420</td>
</tr>
<tr>
<td>6.2</td>
<td>118</td>
<td>487</td>
</tr>
<tr>
<td>5.2</td>
<td>103</td>
<td>541</td>
</tr>
<tr>
<td>4.5</td>
<td>108</td>
<td>589</td>
</tr>
<tr>
<td>3.9</td>
<td>170</td>
<td>633</td>
</tr>
<tr>
<td>3.5</td>
<td>116</td>
<td>666</td>
</tr>
<tr>
<td>3.2</td>
<td>201</td>
<td>699</td>
</tr>
<tr>
<td>3.0</td>
<td>2361</td>
<td>750</td>
</tr>
</tbody>
</table>

STAR Internal Note: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

T. Nonaka (for STAR Collaboration) : 3rd workshop on Physics performance studies at FAIR and NICA, 2021
High statistics collected for $\sqrt{s_{NN}} = 7.7 - 27$ GeV: Precision measurement

STAR FXT: Extend precision measurements to $\mu_B = 750$ MeV

Stay Tuned For BES-II Results

THANK YOU ALL FOR YOUR ATTENTION

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Events (10^6)</th>
<th>μ_B (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>163</td>
<td>420</td>
</tr>
<tr>
<td>11.5</td>
<td>235</td>
<td>315</td>
</tr>
<tr>
<td>14.5</td>
<td>324</td>
<td>264</td>
</tr>
<tr>
<td>17.3</td>
<td>256</td>
<td>230</td>
</tr>
<tr>
<td>19.6</td>
<td>478</td>
<td>206</td>
</tr>
<tr>
<td>27</td>
<td>555</td>
<td>156</td>
</tr>
<tr>
<td>3.0</td>
<td>2361</td>
<td>750</td>
</tr>
<tr>
<td>3.2</td>
<td>201</td>
<td>699</td>
</tr>
<tr>
<td>3.5</td>
<td>116</td>
<td>666</td>
</tr>
<tr>
<td>3.9</td>
<td>170</td>
<td>633</td>
</tr>
</tbody>
</table>

STAR Internal Note: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598
T. Nonaka (for STAR Collaboration): 3rd workshop on Physics performance studies at FAIR and NICA, 2021