Beam Energy Scan theory talks summary

Dmytro (Dima) Oliinychenko
Institute for Nuclear Theory, University of Washington
June 7, 2022

RHIC/AGS Users’ Meeting
RHIC goals

- Learn properties of quark-gluon plasma
- Probe the Equation of State (EoS) of strongly-interacting matter including search for critical point and phase transition
Proton fluctuations [2112.00240]: only non-critical models available

What do we learn from this measurement?
RHIC results challenging theory II

Proton, pion, light nuclei flow [2112.05424, 2112.04055]

- Large sensitivity to EoS [nucl-th/0208016]
- Negative proton dv_1/dy – EoS softening, likely indication of phase transition [nucl-th/0406018, 1803.02053]
- Notice: maximum $R_{out}^2 - R_{side}^2$ at the same energy range [1411.7931]
- EoS softening at which (T, μ)? Can be far away from chemical freeze-out (T, μ). Need simulations and Bayesian analysis!
RHIC results challenging theory III

Light nuclei yields, tp/d^2 sensitive to spinodal region [2205.11010]

Is RHIC observing a spinodal region?
RHIC results challenging theory III

Light nuclei yields, tp/d^2 sensitive to spinodal region [2205.11010]

Is RHIC observing a spinodal region?
Theoretical approaches, their advantages and challenges

- Hydro+ or fluctuating hydro (+ transport)
 - ✓ Includes critical fluctuations ❌ only up to 2nd order so far

- Hydro (+ transport)
 - ✓ Easy to build in custom EoS
 - ✓ Easy to adjust viscosity
 - ❌ Handling spectators (important for flow) under development
 - ❌ Handling phase separation under development
 - ❌ Initial state: compression should depend on EoS
 - ❌ Uncertainties at particlization

- Transport
 - ✓ Spectators, initial state compression
 - ✓ No equilibrium assumption
 - ✓ Can handle phase transitions
 - ✓ Can handle critical fluctuations
 - ❌ Harder to build in a custom EoS
 - ❌ Unknown degrees of freedom
Today’s theory talks: focusing on fluctuations

- Mayank’s talk
 - Development of framework to treat hydro fluctuations
 - Including fluctuation-dissipation theorem
 - Rather small influence of thermal fluctuations on observables

- Maneesha’s talk
 - New method: turning hydro fluctuations into particles
 - Tested in hydrodynamics (boost-invariant + radial expansion)
 - Certain sensitivity of proton scaled variance and rapidity correlations to vicinity to the phase trajectory of the fireball and to diffusion parameter

- Jan’s talk
 - Does transport stage change fluctuations? Yes – for kurtosis
 - Tests in equilibrated box: fluctuations in a fixed volume
 - Scattering influences cumulants even when potentials are absent
 - Scattering makes inferring baryon cumulants from proton cumulants harder
Alternative approach: Transport approach with flexible EoS

Flow is very sensitive to the stiffness of EoS
Working towards Bayesian analysis of flow + HBT + fluctuations
Alternative approach: Transport approach with flexible EoS

Flow is very sensitive to the stiffness of EoS
Working towards Bayesian analysis of flow + HBT + fluctuations
Summary of summary

- **Hydro + afterburner approaches** making progress towards realistic calculation of fluctuations
 - ✓ Account for fluctuation-dissipation theorem [Mayank]
 - ✓ Particlization of fluctuations [Maneesha]
 - ✓ Testing afterburner effects [Jan]
- **Pure transport approaches** need more attention
 - Already results for light nuclei are encouraging: maybe we evidence spinodal region at RHIC
 - Bayesian analysis of flow using transport with tunable equation of state would be helpful – work in progress