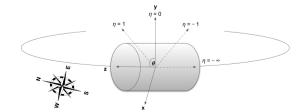
2022 RHIC/AGS ANNUAL USERS' MEETING

From RHIC to EIC

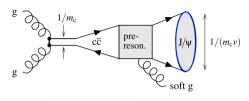
At the QCD Frontiers

This meeting will be held virtually. June 7-10, 2022

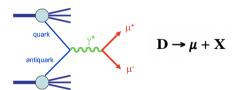

Measurement of J/ψ and $\psi(2S)$ at forward and backward rapidity in p+p, p+Al, p+Au, and ${}^{3}He+Au$ collisions

Krista Smith, Florida State University Thesis Advisor: Anthony Frawley

Brief Introduction

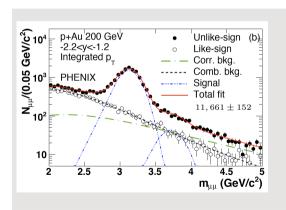

Inclusive $J/\psi \rightarrow \mu^+\mu^-$

Sources of Signal

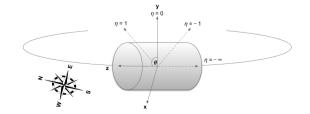

- \circ ggf for Charmonium production
- Feedown from χ_c and $\psi(2s)$
- $\circ\,$ Contributions from B–meson decays

Sources of Background

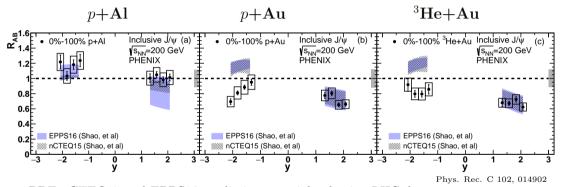
- Dimuons from Drell Yan
- Open heavy flavor decays
 - Predominantly D, D-meson decays
- Dimuon pairs kinematically unrelated
 - Hadrons misidentified as muons
 - Muons from prompt π/K decays


$$\mathbf{B} \to \mathbf{J}/\psi + \mathbf{X}$$

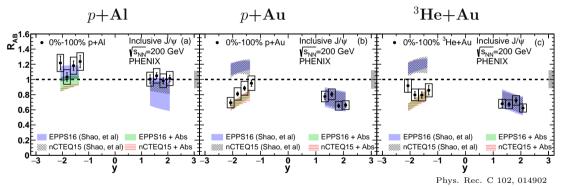
$$\pi \to \mu + X$$
$$K \to \mu + X$$


Dimuon Reconstructed Mass Distribution

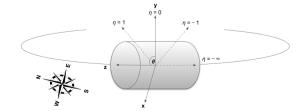
- Unlike-sign reconstructed muon pairs
- Like-sign reconstructed muon pairs
 - Estimate of combinatorial background
- Correlated background
 - $\circ\,$ Open heavy flavor, Drell Yan, etc.
- Fit to the combinatorial background
- J/ψ , $\psi(2S)$ Crystal Ball fits
- Total fit



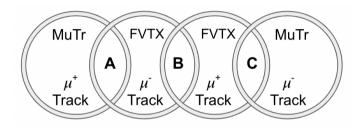
Results of J/ψ Measurements


J/ψ Modification vs. Rapidity (0-100%)

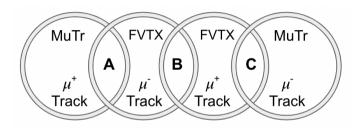
- $\circ\,$ nPDF nCTEQ15 and EPPS16 predictions reweighted using LHC data
 - Agree well with data at forward rapidity
 - Do not agree at backward rapidity for Au target
- Shadowing only


J/ψ Modification vs. Rapidity (0-100%)

- nPDF nCTEQ15 and EPPS16 predictions reweighted using LHC data
 - Added a nuclear absorption estimate at backward rapidity
 - Describe data reasonably well
- Shadowing + Nuclear Absorption

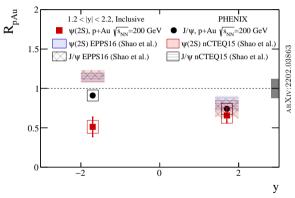


Results of $\psi(2S)$ Measurements



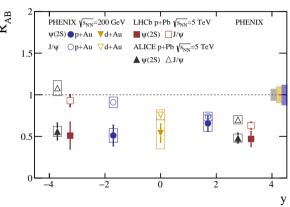
Single FVTX-Matched Muon Pairs

- The idea to utilize single-FVTX matched muon pairs suggested by PHENIX collaborators
 - One muon track has momentum determined by the FVTX detector, and the other track has momentum determined by the MuTr detector
- Combining muon pairs from sets A, B, and C roughly doubled available statistics

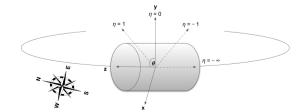

Single FVTX-Matched Muon Pairs

- The idea to utilize single-FVTX matched muon pairs suggested by PHENIX collaborators
 - One muon track has momentum determined by the FVTX detector, and the other track has momentum determined by the MuTr detector
- Combining muon pairs from sets A, B, and C roughly doubled available statistics

Thank you to Cesar da Silva, Jin Huang, Sanghoon Lim & Dave Morrison

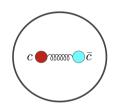

Charmonia Nuclear Modification in p+Au Collisions

- At forward rapidity, J/ψ and $\psi(2S)$ modification show similar suppression
 - Data well described by EPPS16 and nCTEQ15 shadowing predictions
- At backward rapidity, nPDF effects alone cannot describe $\psi(2S)$ modification


J/ψ , $\psi(2S)$ Modification at RHIC and LHC

- At forward rapidity, J/ ψ nuclear modification similar to $\psi(2S)$ nuclear modification
- Stronger suppression observed for $\psi(2S)$ at bkwd rapidity supports final state effects

Thank You!


J/ψ Properties

Quantity	Value
Electric Charge	0
Mass	$3.096916 \; \mathrm{GeV/c^2}$
Charm quark mass	$1.275 \; {\rm GeV/c^2}$
Spin	1
Lifetime	10^{-21} seconds
$\mathrm{B}\mu\mu$	6%
radius	$0.25~\mathrm{fm}$
$\psi(2s)$ radius	$0.45~\mathrm{fm}$
proton radius	$0.8~\mathrm{fm}$
Au nuclei radius	7 fm

Charmonium Formation at RHIC

- Quarkonia is a short-lived bound state of quark- antiquark pairs $(c\bar{c}, b\bar{b})$
- Charmonium is bound state of charm-anticharm pairs
- Transitions can be made to lower states through photon emission
- \circ Gluon gluon fusion (ggf) produces charm-anticharm quark pairs $\sim 2\%$ of all created $c\bar{c}$ pairs at RHIC will form Charmonium states
- \circ $c\bar{c}$ pairs that form Charmonium occur with total energy below the threshold for strong decays
 - $c\bar{c}$ pair has small relative velocity $v/c \ll 1$

Cold Nuclear Matter Effects in p+A Systems

- Gluon Shadowing/Anti-Shadowing:

 Modification (suppression/enhancement) of heavy quark cross section due to modifications of the gluon structure function in the target
- Nuclear Break-up: The break up of the bound J/ψ (or precursor state) in collisions with other target nucleons passing through J/ψ production point
- **3** Cronin Effect: Modification of the J/ψ p_T distribution due to multiple elastic scattering of partons
- **4** Parton Energy Loss: The projectile gluon experiences multiple scattering passing through the target prior to J/ψ production, reducing the J/ψ rapidity

