

Heavy Flavor and Jet Physics with the sPHENIX Detector

Virginia Bailey

Georgia State University
on behalf of the **sPHENIX** collaboration

2022 RHIC/AGS Annual Users Meeting
June 8th 2022

The sPHENIX Physics Program

SPHENIX

study proton spin, transverse-momentum, and nuclear effects

u,d,s

C

photon gluon

sPHENIX Detector

The **sPHENIX** detector at the Relativistic Heavy Ion Collider is designed to measure high transverse momentum probes of the quark-gluon plasma such as jets and heavy-flavor probes, which can offer insight into the small-scale structure of the QGP.

Tracking:

- MAPS-based Vertex Tracker (MVTX)
- Intermediate Silicon Tracker (INTT)
- Time Projection Chamber (TPC)
- TPC Outer Tracker (TPOT)

Superconducting Magnet

1.4T solenoid magnet

Calorimetery:

- Electromagnetic calorimeter
- Inner hadronic calorimeter
- Outer hadronic calorimeter

High rate DAQ and trigger systems

15 kHz trigger + streaming readout in pp/pA

Event Characterization (Not Pictured):

- Minimum Bias Detector (MBD)
- Event Plane Detector (sEPD)

Jet Physics

- Jet measurements out to 70 GeV
 - overlap with LHC measurements
- \square Precision measurements at low p_{T}
- High stats also for
 - \triangleright photons (γ -jet measurements)
 - charged hadrons (fragmentation functions, substructure)

3 years

Signal	Au+Au 0–10% Counts	p+p Counts
Jets $p_{\mathrm{T}} > 20\mathrm{GeV}$	22 000 000	11 000 000
$\mathrm{Jets}\ p_{\mathrm{T}} > 40\mathrm{GeV}$	65 000	31 000
Direct Photons $p_{\rm T} > 20~{\rm GeV}$	47 000	5 800
Direct Photons $p_{\rm T} > 30~{\rm GeV}$	2 400	290
Charged Hadrons $p_{\rm T} > 25~{\rm GeV}$	4300	4100

What we can learn at sPHENIX: Jet v₂

Open question: What is the path-length dependence of energy loss?

- \bigvee v₂ at low p_T \rightarrow flow
- v_2 at high p_T (i.e. jet v_2) \rightarrow energy loss correlations with initial geometry
 - path-length dependence of energy loss

Precision measurements of jet v₂ at *high* p_T

What we can learn at sPHENIX: Jet v₂

Open question: What is the path-length dependence of energy loss?

- \bigvee v₂ at low p_T \rightarrow flow
- v_2 at high p_T (i.e. jet v_2) \rightarrow energy loss correlations with initial geometry
 - path-length dependence of energy loss

In sPHENIX

- Precision measurements of jet v₂ at low p_T
 - Constrain models of path-length dependence of energy loss for jets near QGP medium scale

What we can learn at sPHENIX: R dependence

Open question: What is the interplay between out of cone energy loss and medium response vs. jet structure dependence?

- Competing effects can lead to larger or smaller suppression for large R jets:
 - Recovery of out of cone energy
 - Inclusion of medium response
 - Jets with wider splittings lose more energy
- Models need input from experiment to balance these effects
- ☐ Tension in LHC results at low p_T

What we can learn at sPHENIX: R dependence

Open question: What is the interplay between out of cone energy loss and medium response vs. jet structure dependence?

Precision measurement in region of tension from LHC

- Competing effects can lead to larger or smaller suppression for large R jets:
 - Recovery of out of cone energy
 - Inclusion of medium response
 - Jets with wider splittings lose more energy
- Models need input from experiment to balance these effects
- ☐ Tension in LHC results at low p_T

Other jet measurements in sPHENIX

Heavy Flavor Jets

or photon

di-b-jets

- b-jet tagging using DCA tagger for secondary vertices
 - mass dependence of energy loss
 - back-to-back b-jet measurement reduces contribution from gluon splitting

Open Heavy Flavor Physics

- ☐ Vary the mass of QGP probes:
 - \rightarrow m_{c,b} >> $\Lambda_{QCD} \rightarrow$ produced primarily in early hard scatterings
 - Large mass of b-quarks -> modeled better theoretically
 - Study mass dependence of collectivity and energy loss
 - Provide constraints on diffusion transport parameter of the QGP

Small Systems

- Heavy flavor flow in p+Au:
 - Collectivity in small systems

- \square Jet/high p_T hadrons p+Au:
 - Cold nuclear matter effects
 - Potential for energy loss in small systems
 - Cold QCD spin measurements

Detector Status

Summary

- □sPHENIX detector will provide:
 - Full coverage electromagnetic and hadronic calorimetry
 - High precision tracking and vertexing
 - Fast readout rate
- Design allows for:
 - ➤ High statistics samples of hard probes (jets, photons, high p_T charged hadrons, heavy-flavor)
 - Precision reconstruction of secondary vertices for heavy flavor tagging
 - Complimentary measurements to LHC
- Measurements will improve our understanding of small-scale behavior of the QGP
- Data taking to begin in Feb. 2023!

February 28, 2022

sPHENIX is supported by

Office of Science

Backup

Why Jets in sPHENIX vs. the LHC

- Different QGP:
 - Temperature evolution different between LHC and RHIC

- Different probes:
 - Different quark vs. gluon jet mixture
 - Lower kinematic rangeradiation close to the QGP medium scale early in collision

Heavy Flavor Toolkit

- ☐ Track reconstruction using <u>ACTS</u>
- Heavy flavor reconstruction using KFParticle
 - Developed for CBM experiment and adapted for use in STAR, ALICE, & others
- Tracking, vertexing, & HF reconstruction studied in simulated pp and Au+Au events with pileup

[CBM-SOFT-note-2006-001] [CBM-SOFT-note-2006-002] [CBM-SOFT-note-2007-003] [GSI Talk. Nov 25th, 2008]

Heavy Flavor Hadronization in Medium

- Study effects of medium on hadronization of heavy quarks
- Indications of Λ_c/D^0 enhancement at RHIC
 - Study in detail with sPHENIX
 - Measure p+p baseline in data
- ☐ Discerning power between theoretical models