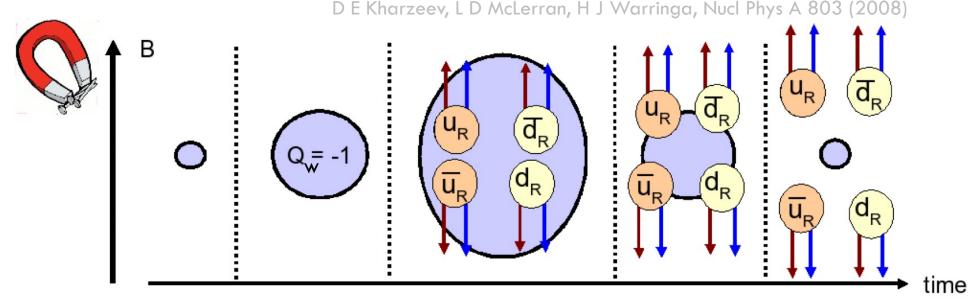


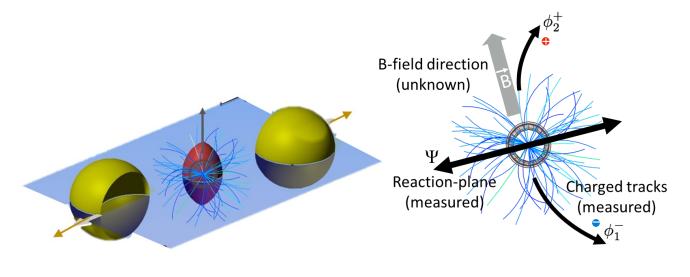
Experimental Investigations of Chiral Magnetic Effects

Evan Finch

Southern CT State University

for the STAR Collaboration

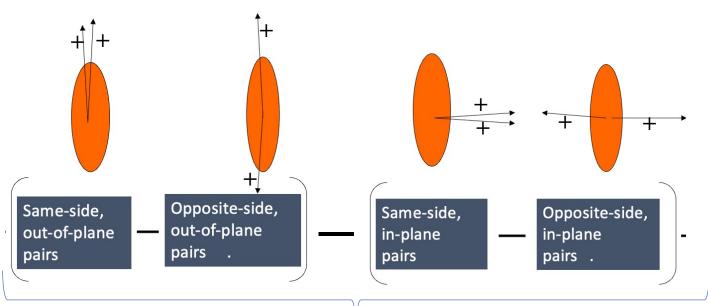

2022 RHIC/AGS ANNUAL USERS' MEETING


Chiral Magnetic Effect

- 1) Chirality imbalance among all light quark flavor from topological fluctuations of gluon fields $(N_L^f-N_R^f)=2Q_{
 m w}$ i.e. "Local Parity Violation"
- 2) Large magnetic field, generated mostly by spectator protons

Combine to give the CME: net electric charge flow along (or opposite to, depending on sign of $Q_{\rm w}$ in this event) the magnetic field direction

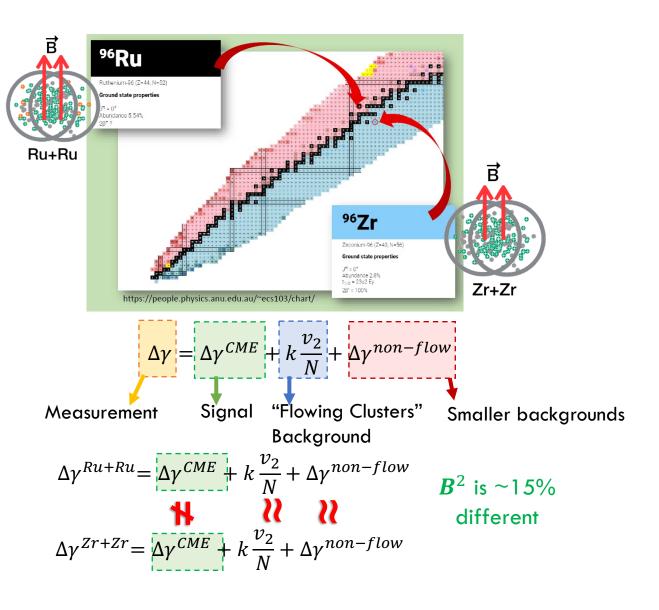
CME Sensitive Observables : $\Delta \gamma$

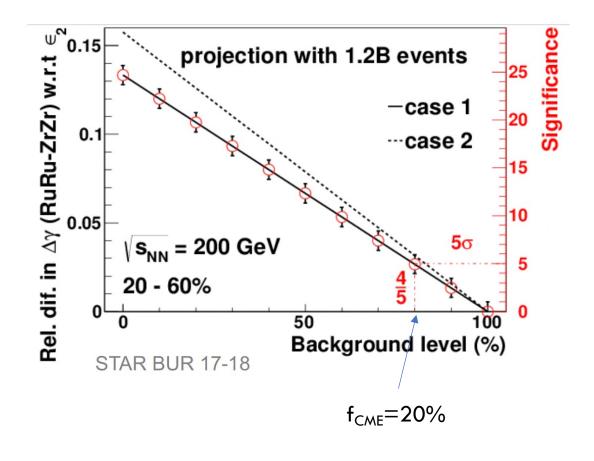


S. A. Voloshin, Phys. Rev. C 70, 057901 (2004)

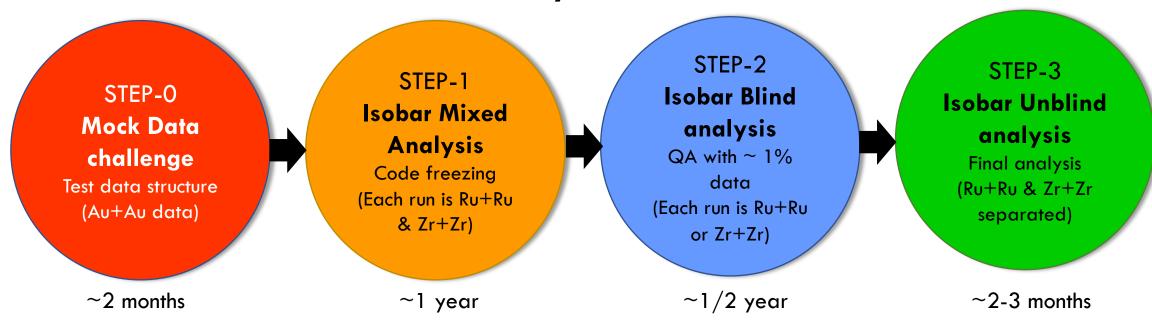
$$\gamma^{\alpha,\beta} \equiv \langle \cos(\phi^{\alpha} + \phi^{\beta} - 2\psi_2) \rangle$$

$$\Delta \gamma = \gamma^{OS} - \gamma^{SS}$$


2nd order event plane (1st order adds no more information here)!



Key backgrounds:


- v₂+(clusters, local charge conservation)
- 3-particle correlations

Experimental Search With Isobar Collisions

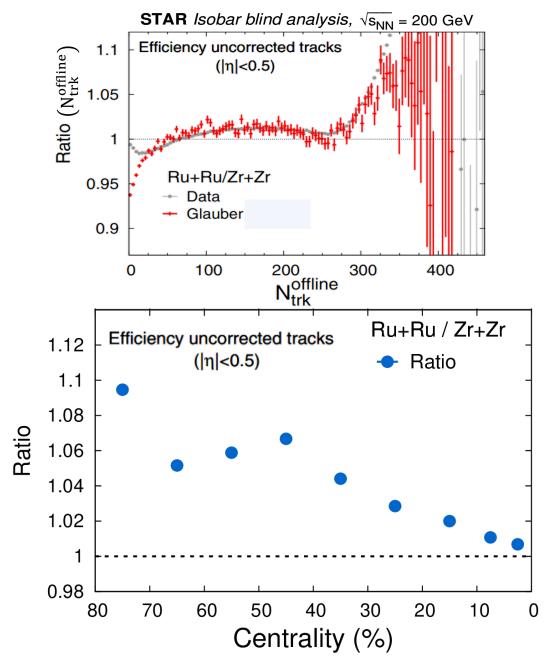
Details of Isobar Blind Analysis

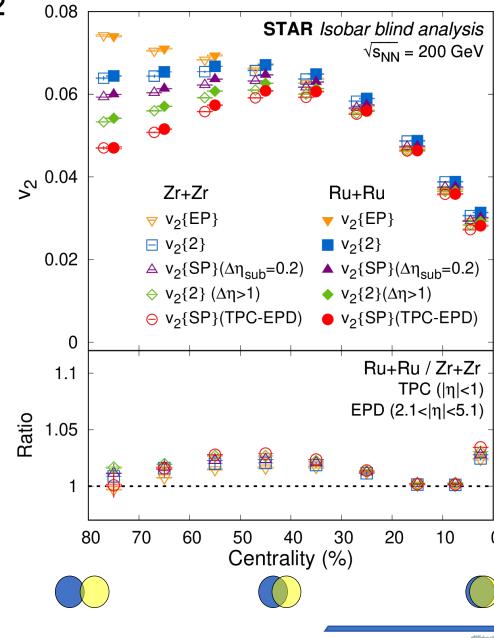
Blind analyses (5 groups):

- $\Delta \gamma$, $\Delta \delta$ and κ
- $\Delta \gamma$, $\Delta \delta$, $\Delta \gamma$ ($\Delta \eta$)
- \Leftrightarrow $\Delta \gamma$ in PP/SP, $\Delta \gamma (M_{inv})$
- ❖ Δγ in PP/SP
- $R(\Delta S)$ Correlator.

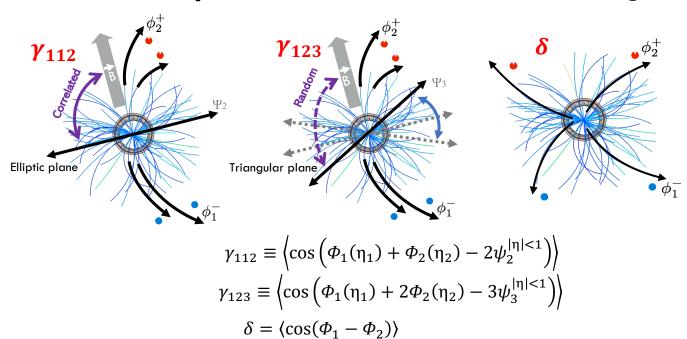
A large, collective effort

Connections between the methods are studied

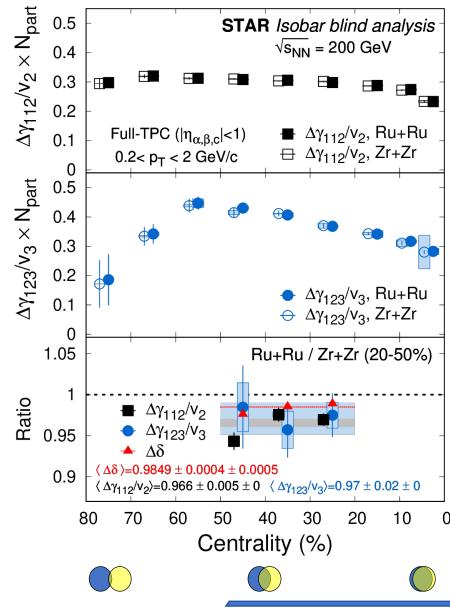


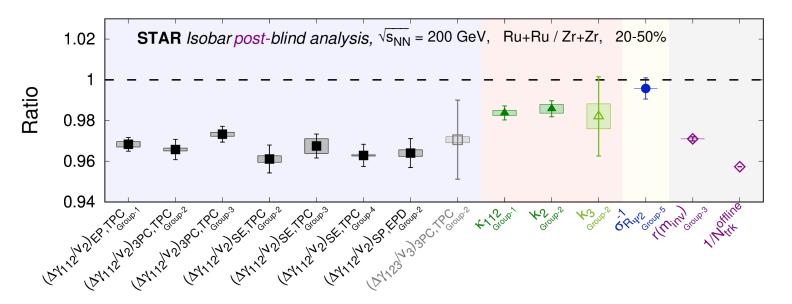

Using the frozen code from STEP-1:

- Sensitivity of observables tested using AVFD simulation
- Similar sensitivities are found in all observables


S. Choudhury et al. Chin. Phys. C, 46 (2022) 014101

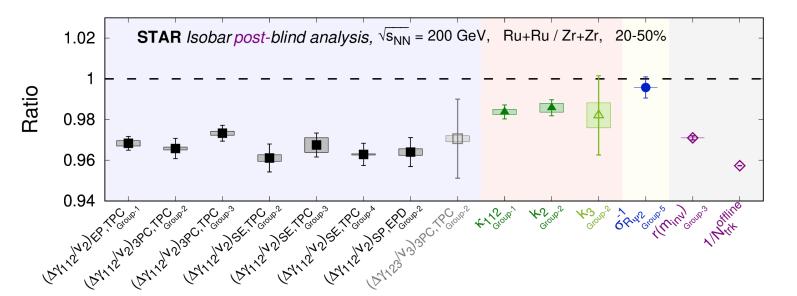
Isobars: Multiplicity and v₂


Isobar: $\Delta \gamma$ Measurement Using Full TPC


Pre-defined CME criteria:

$$\begin{split} &\frac{(\Delta\gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta\gamma_{112}/v_2)^{\text{Zr+Zr}}} > 1 \\ &\frac{(\Delta\gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta\gamma_{112}/v_2)^{\text{Zr+Zr}}} > \frac{(\Delta\gamma_{123}/v_3)^{\text{Ru+Ru}}}{(\Delta\gamma_{123}/v_3)^{\text{Zr+Zr}}} \\ &\frac{(\Delta\gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta\gamma_{112}/v_2)^{\text{Zr+Zr}}} > \frac{(\Delta\delta)^{\text{Ru+Ru}}}{(\Delta\delta)^{\text{Zr+Zr}}} \end{split}$$

Data not consistent with pre-defined CME criteria


Summary of the Isobar Blind Analysis M. S. Abdallah et al. (STAR) Phys. Rev. C, 105 (2022) 014901

From the blind analysis

- No pre-defined criterion is satisfied for the observation of CME
- Precision of 0.4% is reached in the ratio of observables between the two systems.
- $\Delta \gamma / v_2$ ratios are below unity mainly driven by the multiplicity difference between the two isobars

Summary of the Isobar Blind Analysis M. S. Abdallah et al. (STAR) Phys. Rev. C, 105 (2022) 014901

From the blind analysis

- No pre-defined criterion is satisfied for the observation of CME
- Precision of 0.4% is reached in the ratio of observables between the two systems.
- $\Delta \gamma / v_2$ ratios are below unity mainly driven by the multiplicity difference between the two isobars

Important postblinding points: If background comes from flowing clusters, we'd expect

 $\Delta \gamma / v_2$ to scale as 1/N (with some caveats...)

Additional Correction:
$$\frac{(N\Delta\gamma/v_2^*)^{\rm Ru}}{({\rm PRELIMINARY})} \frac{(N\Delta\gamma/v_2^*)^{\rm Zr}}{(N\Delta\gamma/v_2^*)^{\rm Zr}} \approx 1 + \frac{1}{2} \left(\frac{(N\Delta\gamma/v_2^*)^{\rm Zr}}{(N\Delta\gamma/v_2^*)^{\rm Zr}} \right)^{\rm Zr}$$

$$\begin{array}{l} \text{Additional} \\ \text{Correction:} \\ \frac{(N\Delta\gamma/v_2^*)^{\text{Ru}}}{(N\Delta\gamma/v_2^*)^{\text{Zr}}} \approx 1 + \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta\epsilon_{\text{nf}}}{1+\epsilon_{\text{nf}}} + \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{1+\epsilon_3/\epsilon_2/(Nv_2^2)} \\ \frac{\Delta\epsilon_3}{\epsilon_3} - \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta N}{N} - \frac{\Delta v_2^2}{v_2^2} \\ \frac{\Delta v_2^2}{v_2^2} - \frac{\Delta v_2^2}{N} - \frac{\Delta v_2^2}{N$$

See STAR poster by Yicheng Feng

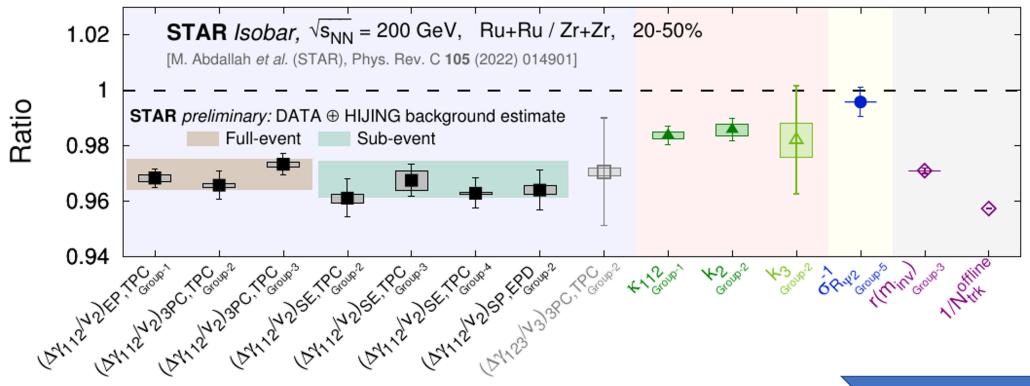
$$\epsilon_2 = \langle \cos(\phi_a + \phi_b - 2\phi_{cluster}) \rangle \frac{N_{2p} v_{2,2p}}{N v_2}$$

$$\epsilon_{nf} = v_{2,nf}^2 / v_{2,true}^2$$
Estimation by 2-D de

Flowing cluster background scales with N_{2p}/N^2

Estimated by measuring N_{2p} directly in data

$$\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45 \pm .08)\%$$


$$\epsilon_{nf} = v_{2,nf}^2/v_{2,true}^2$$

Estimation by 2-D decomposition of 2-particle correlations gives

$$\frac{-\Delta \epsilon_{nf}}{1 + \epsilon_{nf}} = (0.65 \pm 0.11 \pm 0.22)\%.$$

Contribution of direct 3-particle correlations.

Estimation from HIJING gives $-(0.85\pm0.26\pm0.44)\%$

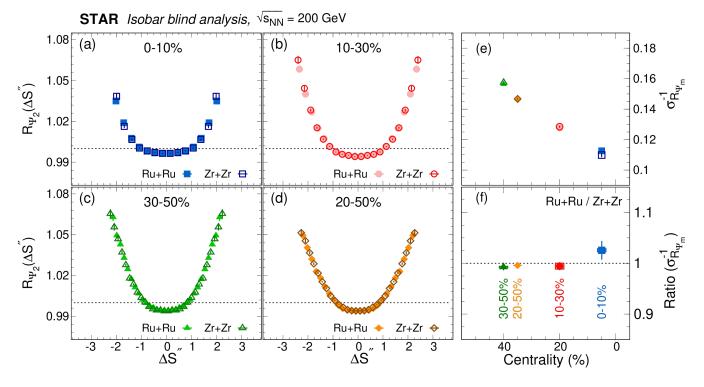
Preliminary Isobar Background Estimate (Post-Blinding)

See STAR poster by Yicheng Feng

Isobar post-blinding: $\Delta \gamma$ results consistent with preliminary background estimate within current uncertainty.

Isobar: Charge Separation Measurement with R_{ψ_2}

N. Magdy et al. Phys. Rev. C, 97 (2018) 061901


$$\pmb{R}_{\psi_2} \; (\Delta S) = \pmb{C}_{\psi_2} \; (\Delta S) / C_{\psi_2}^{\perp} (\Delta S)$$

$$C_{\psi_2} = \frac{N_{\text{real}}(\Delta S)}{N_{\text{shuffled}}(\Delta S)}$$

$$\Delta S = \left\{ \frac{\sum_{i=1}^{n+} w_i^+ \sin(\phi_i - \psi_2)}{\sum_{i=1}^{n+} w_i^+} - \frac{\sum_{i=1}^{n-} w_i^- \sin(\phi_i - \psi_2)}{\sum_{i=1}^{n-} w_i^-} \right\}$$

 σ_{Ψ_2} is the Gaussian width of the respective $R(\Delta S'')$

Measurement of the inplane and out-of-plane distributions of the dipole separation eventby-event

No significant difference is observed between two isobar systems

In studies with frozen code for blind analysis, R_{ψ_2} and $\Delta\gamma$ have similar sensitivities to CME signal and background; $1/\sigma_{R_{\psi_2}}^2 \approx N\Delta\gamma$

Pre-defined CME criterion in blind analysis:

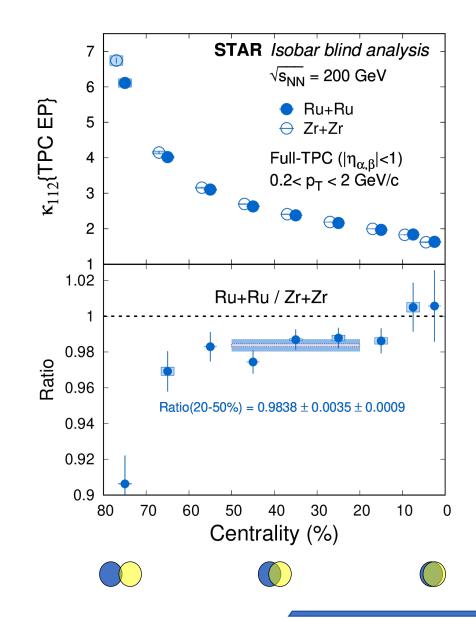
$$1/\sigma_{\Psi_2}^{\text{Ru+Ru}} > 1/\sigma_{\Psi_2}^{\text{Zr+Zr}}$$

Isobar: K₁₁₂ Measurement with Full TPC

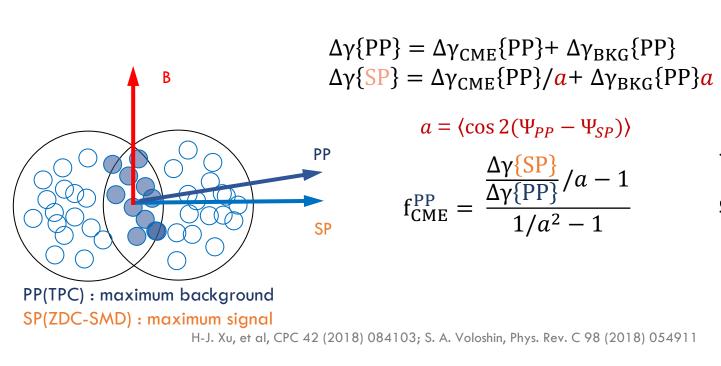
Pre-defined CME criteria:

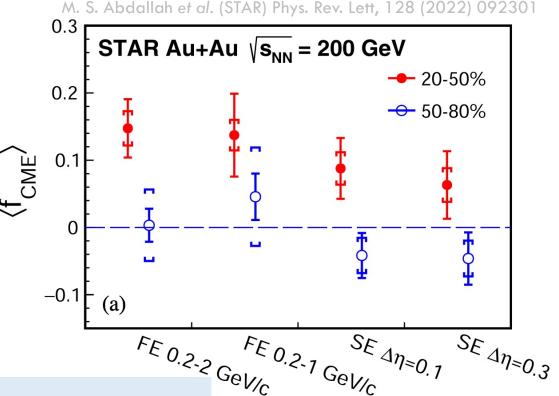
$$\frac{(\Delta \gamma_{112}/v_2)^{\text{Ru+Ru}}}{(\Delta \gamma_{112}/v_2)^{\text{Zr+Zr}}} > \frac{(\Delta \delta)^{\text{Ru+Ru}}}{(\Delta \delta)^{\text{Zr+Zr}}}$$

The background contributions due to local charge conservation (LCC) and transverse momentum conservation (TMC) have a similar characteristic structure that involves the coupling between v_2 and δ .


So, we studied the the normalized quantity:

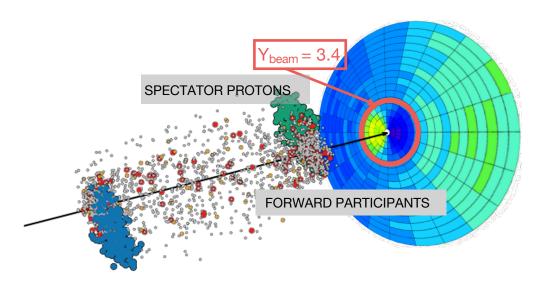
$$\kappa_{112} \equiv \frac{\Delta \gamma_{112}}{\nu_2 \Delta \delta}$$


Pre-defined CME criterion:


$$\frac{(\kappa_{112})^{Ru+Ru}}{(\kappa_{112})^{Zr+Zr}} > 1$$

Data not compatible with pre-defined CME criterion

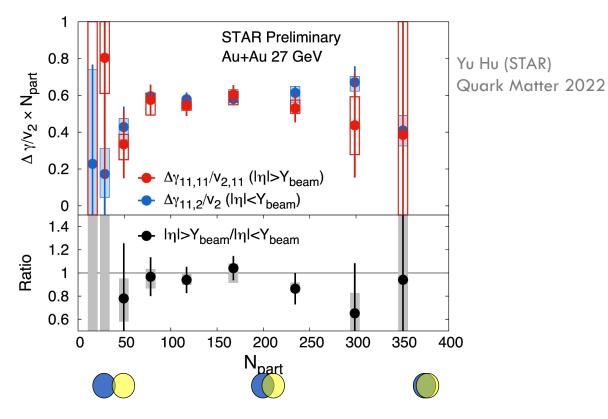
200 GeV Au-Au Data, Using Participant and Spectator Planes



- Can we reconcile this f_{CME} in Au-Au with isobar results? In isobar system, smaller B-field ($\sim A^{1/3}$), larger $\Delta \gamma$ "flowing clusters" background ($\sim 1/A$), would argue for a smaller f_{CME} in isobar compared to Au-Au.

 Y. Feng et. al., Phys. Lett. B820 (2021) 136549
- STAR 2022 BUR: with 20B events from runs 23 and 25, we can achieve better than 5σ significance provided the possible CME signal fraction remains at 8%

New Work: Measurement with STAR EPD @ 27 GeV


$$\Delta \gamma = \Delta \gamma^{BG} + \Delta \gamma^{CME}$$

If
$$\Delta \gamma^{BG} = b \ v_2$$

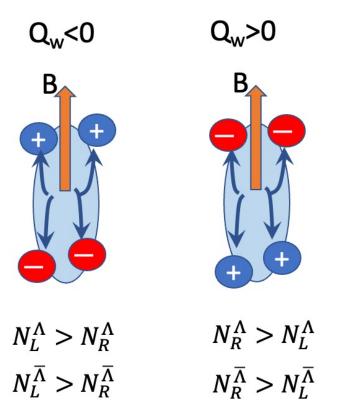
$$\left(\frac{\Delta \gamma}{v_2}\right) = \frac{\langle \cos(\alpha + \beta - 2\Psi)\rangle}{\langle \cos(2a - 2\Psi)\rangle}$$
 RP, PP, SP...

Under a 'pure background' scenario, all these ratios are equal. If different measurements yield different ratios, this would indicate a CME signal.

We measure the elliptic flow and the charge separation, using $\Delta \gamma$ w.r.t. **EPD-**inner first harmonic plane and the **EPD-outer second harmonic plane**.

The ratio of $\Delta \gamma/v_2$ between spectator-proton rich EPD Ψ_1 plane and participant-dominated Ψ_2 plane. CME-driven correlations will make this ratio >1.

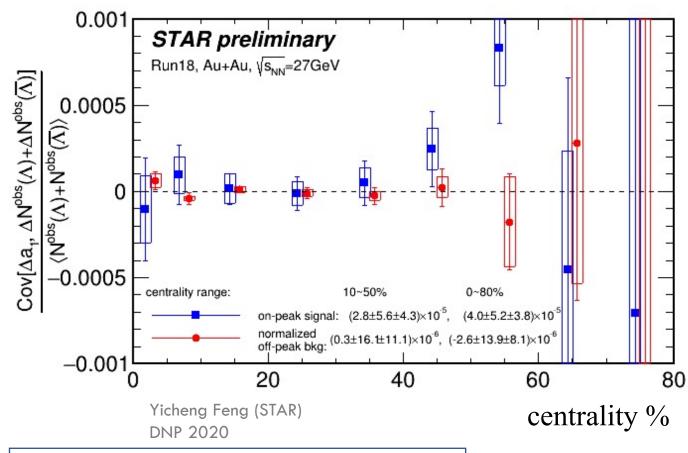
New Work: Correlations with Other Parity-Odd Signals (Λ helicity)


Another observable sensitive to Local Parity Violation is net helicity of ΛS in each event.

F. Becattini et al. Phys.Lett.B 822 (2021) 136706

F. Du et al. Phys.Rev.C 78 (2008) 044908

In each event, sign of charge separation dipole and net helicity are both determined by same $\mathbf{Q}_{\mathbf{w}}$! $(N_L^f-N_R^f)=2Q_{\mathbf{w}}$


 \rightarrow In events where positive charges flow in B-field direction, expect $N_L^{\Lambda}-N_R^{\Lambda}>0$

Can look for a correlation between sign of CME in each event and net handedness of Λ in that event. Two parity-odd observables with very different background sources (can also observe $\overline{\Lambda}$ as further systematics check and/or to increase statistical power)

Need 1st order event plane (STAR EPD or ZDC/SMD)

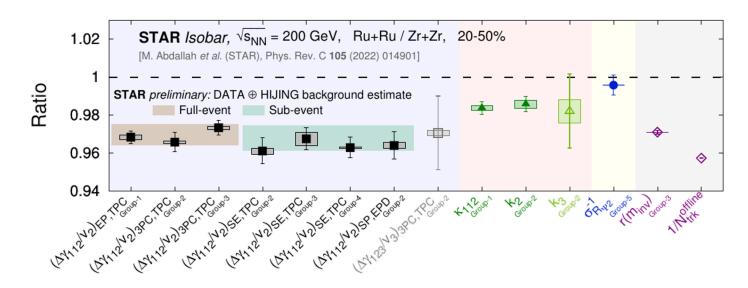
New Work: Correlations with Other Parity-Odd Signals (Λ helicity)

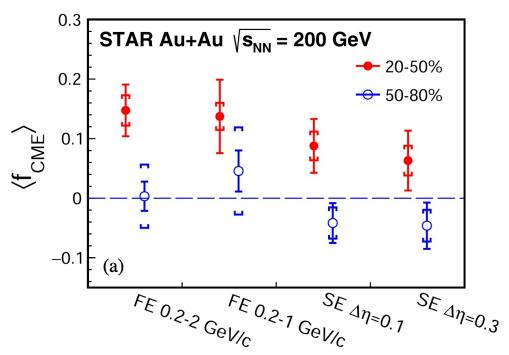
$$a_1^{\pm} = \langle \sin(\phi_{\pm} - \Psi_{\mathsf{RP}})
angle \quad \Delta N = N_L^{\Lambda} \!\! > N_R^{\Lambda}$$
 $\Delta a_1 = rac{N_+}{N_+ + N_-} a_1^+ - rac{N_-}{N_+ + N_-} a_1^-$

In 27GeV Au+Au data, we use EPD for ψ_1

Measure covariance between

$$a_1^+ - a_1^-$$
 and $N_L^{\Lambda} > N_R^{\Lambda}$


"positive charge flow along B-field" "Excess of lefthelicity Λ "


Positive covariance (blue points above zero, 20-60% centrality) would indicate presence of two parity-odd effects tied to local parity violation

In 27GeV run 18 data, signal consistent with zero within uncertainty

2022 STAR BUR: This method will be target for future high-statistics Au-Au runs.

Summary: Current Experimental Status of CME in STAR

Isobar blind analysis: no method shows evidence for CME using pre-defined criteria.

Isobar post-blinding: $\Delta \gamma$ results consistent with preliminary background estimate within current uncertainty. We are working to reduce this uncertainty.

In 200GeV Au+Au data, spectator versus participant plane analysis shows signal $1-3\sigma$ above zero; working to better understand possible remaining non-flow contributions.

More novel analyses underway, including using 1st-order plane to investigate correlations with another parity-odd observable (Λ helicity)