

sPHENIX Status

on behalf of the sPHENIX collaboration

MIT

10th June 2022

RHIC/AGS Annual Users' Meeting

The sPHENIX detector

Not	shown	· cEDD	and	MDD

First run year	2023
$\sqrt{s_{NN}}$ [GeV]	200
Trigger Rate [kHz]	15
Magnetic Field [T]	1.4
First active point [cm]	2.5
Outer radius [cm]	270
$ \eta $	€1.1
$ z_{vtx} $ [cm]	10
N(AuAu) collisions*	1.43x10 ¹¹

* In 3 years of running

Run schedule

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \text{ nb}^{-1}$	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb^{-1} [10%-str]	
2024	<i>p</i> ↑+Au	200	7_	5	$0.003 \ \mathrm{pb^{-1}} \ [5 \ \mathrm{kHz}]$	$0.11~{ m pb^{-1}}$
					$0.01~{ m pb^{-1}}~[10\%\mbox{-}str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	$13 (15) \text{ nb}^{-1}$	21 (25) nb ⁻¹

06/10/2022

Core physics program

Jet correlation & substructure

Vary momentum/ angular size of probe

Parton energy loss Vary mass/ momentum of probe g u,d,s

<u>Upsilon</u> spectroscopy

Vary size of the probe

Cold QCD

Vary temperature of QCD matter

Tracking at sPHENIX

• Tracking currently consists of 4 sub-detectors; Pixel Vertex Detector (MVTX), Intermediate Silicon Tracker (INTT), Time Projection Chamber (TPC) and Time Projection Outer Tracker (TPOT)

The Maps VerTeX detector

- Comprises of 3 layers of monolithic active pixel sensors using the ALICE ALPIDE
- The front-end readout uses the ALICE Readout Unit
- The back-end uses the ATLAS FELIX

ALPIDE thickness [μm]	50	
Pixel size [μm] / matrix	29 x 27 / 1024 x 512	
Technology	180nm CMOS	
Power Consumption [mW/cm ²]	40 (mean), 300 (peak)	
Stave Material Budget	0.3% X ₀	
Timing resolution	A few μs (tunable)	
XZ spatial resolution [μm]	< 6	

MVTX staves

06/10/2022 sPHENIX Status

MVTX

- All sensor, stave and board production is complete
- Detector assembly underway at Lawrence Berkeley Lab
- Overall displacement from nominal position < 40 um over 4 cm
- Final assembly pieces arrived Wednesday
- Detector insertion: end of January 06/10/2022

INTT

INTT ladder placement at BNL on 6th June 2022

- Silicon strip detector
 - Gives 2 hit points
- Fast, can resolve beam crossings

- All ladders are produced, detector is under final construction
- Detector insertion: middle of January

TPC

- Compact TPC, 20 < r [cm] < 78 (active volume r > 30cm)
- IBF is minimized, TPC is live at all times
 - IBF < 0.5% at a few kV in GEMs
- Detector installation: middle of November

Top –Outer field cage. Bottom - TPC modules.

TPOT

TPOT

TPC

- TPOT adds another hit point for tracking detectors
- Allows calibration of beam-induced space charge distortions
- Uses micromegas for detection
- Detector installation: early October

Left – TPOT module looking for cosmics. Center – signal coincident with trigger

EM calorimetry

- Sampling EMCal, using SciFi in tungsten and epoxy
- 20.1 X_0 and 0.83 λ_{int}
- All sectors are complete! Performing final burn ins
- Detector installation: end of June

Hadron calorimetry

- Two detectors on inside and outside of the magnet
- Alternating tiles of steel (outer) or aluminum (inner) and scintillator
- Both detectors are complete and inserted by 06/09/2022!
- First cosmics seen in sPHENIX using OHCal!

Left – Cosmic ray in outer HCai. Kight – Inner HCal under installation, taken from the magnet

Event Plane Detector

- EPD is based off STAR design
- Adapted for use in sPHENIX
- Covers $2.0 \le |\eta| \le 4.9$
- 2 disks, with 12 sectors and 31 tiles/sector
- 9 sectors fully complete
- On track for end-of-summer construction

 Detector installation: end of January (north) and beginning of February (south)

EPD sectors under construction

One EPD sector

Beam pipe

- sPHENIX beam pipe was sent to California for work
- Sadly, pipe was lost in warehouse fire
- Luckily, STAR had a beam pipe that met our specs!
- After inspection, NEG coating looked good
- Discussed with MVTX team, no obvious issue with installation

Data Acquisition

- Triggered (calorimeters)
- 2. Streamed (trackers)
- Front ends produce packets
- Event builder combines packets offline
 - Less risky than doing online
- Using streamed data increase HF pp sample by 50 500

14

sPHENIX under construction

15

sPHENIX under construction

16

06/10/2022 sPHENIX Status

Jets

- sPHENIX will collect significant statistics for jets up to high p_T
- We expect increased sensitivity below 100 GeV where LHC is in tension

Jet and heavy flavor physics

Left – c/b jet distributions from secondary vertex mass Middle – Predicted b-jet subjet splitting sensitivity Right - R_{AA} predictions from prompt and non-prompt D^0

Heavy flavor physics

- Prediction that transient mag. field can influence v_1
- · This effect is odd under charge-conjugation, resulting in splitting
- D^0 is <u>complicated</u>, requires good production knowledge

Quarkonia

- sPHENIX aims to separate all three Upsilon states for the first time at RHIC
- Recently observed Y(3S) suppression < theory prediction
- sPHENIX is developing ML algorithms to reject hadronic bkg.

Cold QCD

- Cold QCD program is greatly extended using streaming readout
- PHENIX saw strong nuclear dependence on Transverse Single Spin Asymmetry measurements for charged hadrons
 - sPHENIX will collect much more statistics here

Conclusions

- The collaboration has adapted to the challenges posed by the pandemic and external factors
- Production and construction is progressing well
 - Hadronic calorimeters and magnet are all in place
 - EMCal is performing final burn-ins
 - All tracking detectors are under construction
 - EPD production is on track for end-of-summer
- The collaboration has maintained its engineering, hardware and computing work force
- We are now putting together more formal "first physics" teams
- sPHENIX is on track to see first collisions in February 2023

Thank you

Back Up

Collaboration structure

LHC vs RHIC

25

Installation

