Machine Learning in Experiment & Analysis

(James) Daniel Brandenburg
Brookhaven National Laboratory
A STAR-perspective talk for the
MMXXII RHIC/AGS Users Meeting

STAR ML Coordinators:
Raghav Kunnawalkam Elayavalli,
Jerome Lauret, JDB
Teaching the Machine

1. Identifying Heavy Flavor Jets
2. Multi-dimensional unfolding
3. A+A Event Characterization

Learning the mid-rapidity multiplicity or centrality from EPD

Teaching the Machine

1. Identifying Heavy Flavor Jets
2. Multi-dimensional unfolding
3. A+A Event Characterization

Tuesday, June 7th, 2022
JDB @ RHIC/AGS Users Meeting 2022
Identifying Jets with JetVLAD

- Supervised learning model based on NetVLAD [Arandjelovic et al., arXiv:1511.07247]
- **NB: VLAD = Vector of Locally Aggregated Descriptors**
- NetVLAD takes a set of particles as an input and returns a fixed-length feature vector that characterizes it.
 - Similar principle as document2vec etc.
 - Document = set of tokens (characters)

Describe jets as a set of particles:

\[\mathcal{S} = \{(p_{T,i}, \eta_i, \phi_i, \ldots)\}_{i=1}^{n} \]

- Characterize features in a natural coordinate space
- And, find similarity between documents/jets in n-dimensional feature space

Figure 1. Our trained NetVLAD descriptor correctly recognizes the location (b) of the query photograph (a) despite the large amount of clutter (people, cars), changes in viewpoint and completely different illumination (night vs daytime). Please see appendix C for more examples.
Methodology

- **PYTHIA 8.235 generator**
 - $p + p$ collisions at $\sqrt{s} = 200$ GeV
 - Generate cross-section weighted samples
 - Identify jets from both:
 - Partons (c, b quarks)
 - Meson tagging ($D^0 = c\bar{u}$)

- **PYTHIA events → STAR detector fast simulators**
 - Perform simplified simulation of detector response, so that input is ~ real data
 - Gaussian smearing of p_T → account for tracking resolution
 - Event vertex information smeared by known STAR HFT resolution

- **Network Input:** $\left(p_T, \eta, \phi, DCA_{xy}, DCA_z\right)$

- **Dataset split:** 80% : 10% : 10% for training : testing : validation

- Grid search for hyper-parameter optimization
Tagging Results

- Good tagging performance: > 80%
- Background: Relatively high rejection at e.g. 80% efficiency
- Minimal dependence on jet p_T
Robustness and effect of the jet id method?

- Particle level (i.e. D^0 meson) tagging approach is more experimentally consistent.
Robustness and effect of the jet id method?

- Particle level (i.e. D^0 meson) tagging approach is more experimentally consistent
- Effect of thermal background from event?
 - Without retrain, performance suffers. After retrain, comparable performance as w/o
Next steps

• Study energy dependence: $\sqrt{s} = 510$ GeV, $\sqrt{s} = 7$ TeV ...

• Utilize powerful JETSCAPE framework for additional studies
 • Jets in A+A events
 • Quenched jets
 • ...

• Present methodology + initial results J. Bielčíková et al 2021 JINST 16 P03017
• + look out for new preprint with these new results Mrazkova et. al in prep

OK, now let’s say we have our jets and do a measurement - How do we get back to the PHYSICS
Unfolding: Measurement → Physics

Detector-level

Data

Particle-level

Truth

Conceptual view

• Correct the distributions from data at the ensemble level to remove effect of detector resolution
What are our options?!

Traditional Methods:

RooUnfold Methods
- iterative ("Bayesian");
- singular value decomposition
- simple inversion of the response matrix without regularization

PyUnfold
- Regularized inversion (Truncated Singular Value Decomposition)
- iterative ("Bayesian") = Richardson-Lucy

ML + Unfold = OMNIFOLD

Phys. Rev. Lett. 124, 182001

OMNI\textsc{Fold}: What's the big deal?

Three challenges in unfolding

1. Binned observables
2. Limited dimensional simultaneous unfolding (partially consequence of #1)
3. Inability to encode effects of auxiliary features [see what you want to see]

- Closure on 3 flavors to demonstrate the effectiveness of OMNI\textsc{Fold}'s solutions
 - \textsc{UniFold}: A single observable as input. This is an unbinned version of iterative Bayesian unfolding (IBU)
 - \textsc{MultiFold}: Many observables as input (e.g. jet kinematics)
 - \textsc{OmniFold}: Use full event/jet as input – no limit on information vector

\[\mathcal{J} = \langle y, p_T^e, q_T, \phi, \cdots \rangle \]
OMNIFold: Closure Example

- Many more examples in Phys. Rev. Lett. 124, 182001
- OMNIFold: Even in 1D cases, matches or exceed performance of e.g. IBU
- But what about more multidimensional cases?

- Robust, consistent performance
Plus free lunch: Correlations *pro bono physico*

\[\mathcal{J} = \langle y, p_T^e, q_T, \phi, \ldots \rangle \]
\[\Theta = \langle y, p_T^e, q_T, \phi, \ldots \rangle \]

- ALL variable correlations as a natural output.
- Entirely unbinned!
 - Binning is only for visual demo
Applicability at RHIC

- PYTHIA 8.235 generator
 - Charged jets only for now
 - Jet algorithm anti-k_T $R = 0.4$
- Jet selection:
 - $p_T > 10$ GeV,
 - $|\eta| < 0.6$,
 - number of constituents > 1,
 - passed SoftDrop.
- SoftDrop grooming parameters:
 - $\beta = 0$ and $z_{\text{cut}} = 0.1$.

- Correlations before and after unfolding
- Recovering ‘true’ correlations opens physics opportunities

Work by Youqi Song (Yale)
Studies and Opportunities

- Explore correlations that encode fragmentation information
- E.g. Jet mass \(m \) vs. Jet charge \(Q \)

More always better?

HERWIG & PYTHIA closure tests

6 inputs: \(p_{\perp}, Q_K^{0.5}, M, M_g, R_g, z_g \)
7 inputs: + \(Q_K^{2} \)
9 inputs: + underlying event mult & \(p_{\perp} \)

Or at least not worse?
STAR Event Plane Detector (EPD)

Goal:
Characterizing A+A events across a range of collision energies

Learn the event multiplicity (centrality) independent of the mid-rapidity tracking detector

EPD: $|\eta| \approx 2 - 5$
Challenges:
• Many different measurements
 • ADCs on 31 * 12 * 2 = 744 tiles
• ADC distribution depends on interaction location (z_{vtx})
• Energy dependence of mid-to-forward rapidity multiplicity
 • At various energies – strong y dependence of multiplicity spectrum
• Changes in relative acceptance

27GeV Au+Au

Forward-backward event-plane correlation

200GeV isobar

ADC distri.
in each cell

Shinichi Esumi, Yuri Sato
Learn to predict the mid-rapidity multiplicity from:
Each set of EPD signals (2 x 16 ring summed ADCs) + primary interaction vertex location

Shinichi Esumi (a few slides taken from Yuri Sato’s Master thesis)
Inst. of Physics, Univ. of Tsukuba
Tomonaga Center for the History of the Universe (TCHOu)
(some) of the input data

Shinichi Esumi, Yuri Sato

Tuesday, June 7th, 2022 JDB @ RHIC/AGS Users Meeting 2022
Results & comparison to “basic”

- Diagonal correlation – learning the multiplicity at mid-rapidity
- NN resolution is $\sim \times 2$ better than “basic” single ring-sum
- Optimal resolution utilizing ADC spectrum up to 2 MIPs

Shinichi Esumi, Yuri Sato
Energy dependence

- Strong correlation obtained at all energies
- Understand what was learned by looking at the weights

Beam energy dependence
(19.6 -> 14.5 -> 11.5 GeV)

Shinichi Esumi, Yuri Sato
Understanding the weights & energy dependence

- Sign change in weights, correspond to positive/negative correlation with mid-rapidity multiplicity
- Change in rapidity spectrum -> intuitive understanding of the changes in weights
- Event centrality characterization independent of mid-rapidity tracker
 - Important for studies susceptible to auto-correlations, e.g. fluctuation analyses

Shinichi Esumi, Yuri Sato

19.6GeV Au+Au (Run19)

14.5GeV Au+Au (Run19)

11.5GeV Au+Au (Run20)

inner 3~5 rings have negative weighting factors
Summary

Exciting times in ML research

1. ML is a tool for improving analysis and extracting meaning from data

2. Fundamental ML research → HEP
 • **OMNIFold**:
 • unites authors from various fields
 • Powerful tool for HEP, only just begun to dig into the possibilities

3. ML techniques can be understood, and made reliable for physics

Thanks to all whose work I showed