Search for leptoquark mediated e-to-tau transit at EIC

Jinlong Zhang (Shandong University)

Based on work with Abhay Deshpande (SBU/BNL/CFNS), Jin Huang (BNL), Krishna Kumar (UMass, Amherst), Yuxiang Zhao (IMP,CAS) and ECCE EW/BSM WG

RHIC&AGS Users’ Meeting 2022
Charged Lepton Flavor Violation

- Lepton Flavor (generation) is not conserved, neutrino oscillations observed. (2015 Nobel Prize)

- Charged lepton flavor violations (CFLV) should also be allowed within the SM; but extremely low rate, e.g. BR(\(\mu \rightarrow e\gamma\)) < 10^{-54}

- Many BSM models predict significantly higher rate of CFLV, e.g. SUSY slepton mixing BR(\(\mu \rightarrow e\gamma\)) < 10^{-15}
Experimental Searches of CLFV(1,2)

- LFV(1,2): Extensive searches for have placed stringent experimental limits.
 - SINDRUM-II, MEGA, SINDRUM Belle, BaBar, Mu2e,
- LFV(1,3): Several orders of magnitude \textbf{weaker} limits than LFV(1,2)
$e \rightarrow \tau$ conversion at ep collision

Various models predict enhanced sensitivity for LFV(1,3) while suppressing LFV(1,2)

- **Leptoquark** models provide a good benchmark to study sensitivity

- HERA set limits in coupling-mass space for LQ production in e-p scatterings

- At the EIC, with much higher luminosity, $10^{30-31} \rightarrow 10^{33-34}$ cm$^{-2}$s$^{-1}$, ~2 orders of magnitude improvement of the sensitivity is expected

New discovery space: $e \rightarrow \tau$ conversion

Assume 0.1 fb cross-section sensitivity

\[
\frac{\lambda_1 \lambda_2}{M_{LQ}^2}
\]

~2 orders of magnitude
Leptoquark

Leptoquarks (LQs) appear in certain extensions of the SM.

- Symmetry between lepton sector and quark sector
- Flavor violating but fermion number \((F = 3B+L)\) conserving
- Buchmüller-Rückl-Wyler (BRW) framework: 14 different LQ types (7 scalars, 7 vectors)
- CLFV at tree level processes; allow coupling between same and different generations of quarks and leptons at initial state and final state

\[
\begin{align*}
\text{s-channel} & : e^- \quad LQ \quad \tau^- \\
& : \bar{q}_\alpha \quad \bar{q}_\beta \\
F = 0
\end{align*}
\]

\[
\begin{align*}
\text{u-channel} & : e^- \quad q_\alpha \quad \tau^- \\
& : q_\beta \quad \bar{q}_\beta \\
\text{F = 0}
\end{align*}
\]

\[
\begin{align*}
\text{s-channel} & : e^- \quad LQ \quad \tau^- \\
& : q_\alpha \quad q_\beta \\
|F| = 2
\end{align*}
\]

\[
\begin{align*}
\text{u-channel} & : e^- \quad \bar{q}_\alpha \quad \tau^- \\
& : \bar{q}_\beta \quad LQ
\end{align*}
\]
Goal of this Study at EIC

- Replace electron with tau
- Tau back-to-back with current jet
- Primary vertex reconstructed from tracks of current jets
- **Tau vertex displaced at mm level**
 - 3-prong tau jet; decay topology important for \(\tau \) jet ID
 - 1-prong: recovering higher branching ratios; but background control is much more demanding

Tau decay mode and branching ratio

- **3-prong**
 - \(\pi^- \pi^+ \pi^- \nu_\tau \) 9.31 (0.05)%
 - \(\pi^- \pi^+ \pi^0 \nu_\tau \) 4.62 (0.05)%
 - others (kaon, etc) 1.28%

- **1-prong**
 - \(\mu^- \bar{\nu}_\mu \nu_\tau \) 17.39 (0.04)%
 - \(e^- \bar{\nu}_e \nu_\tau \) 17.82 (0.04)%
 - \(\pi^- \nu_\tau \) 10.82 (0.05)%
 - \(\pi^- \pi^0 \nu_\tau \) 25.49 (0.09)%
 - \(\pi^- 2\pi^0 \nu_\tau \) 9.26 (0.10)%
 - \(\pi^- 3\pi^0 \nu_\tau \) 1.04 (0.07)%
 - others (kaon, etc) 3.24%
 - others 0.21%

HERA Efficiency ~2.5%

At EIC, benefit from improved vertex and jet detection, aim to greater than 10% efficiency with negligible background in a 100 fb\(^{-1}\) data sample
How LQ Tau looks like in ep

Mostly at Barrel (best detector performance)

Highly boosted narrow jet

Away from primary vertex by serval mm

High pT
Features of LQ $e \rightarrow \tau$ event

- $e \rightarrow \tau$ event
 - 2+ jets
 - Low particle multiplicity
 - Modest missing pT (partial tau pT)

- DIS event
 - 1 jets dominating
 - Higher particle multiplicity
 - Missing pT \sim lepton pT

Note: electron in DIS NC is masked; Fastjet, Anti-k_T, R = 1.0; jet pt >2 GeV; $Q^2>100$ GeV2
Search strategy for 3-prong decays

- Event generators:
 - LQGENEP 1.0 for Leptoquark events (L. Bellagamba, 2001)
 - DJANGOH 4.6.8 and pythiaRHIC (pythia6) for DIS (NC + CC) events
 - Jets reconstructed from MC events
 - Fastjet, Anti-\(k_T\), R = 1.0
 - Scattered electron for SM DIS and neutrinos excluded
- Secondary vertex finding from \(\pi^-\pi^+\pi^-\)
Events Selection

- di-jet: number of jets ≥ 2
- bk2bk: $\cos \Delta \phi_{jet1-jet2} < -0.7$
- jetmulti: number of particles < 5 for at least one of the jets
- jetpt: $p_T(jet1) > 4.0$ and $p_T(jet2) > 2.5$
- 3pi: jet contain 3pi
- tau3pi: 3pi jet aligns with missing p_T
- vertex: $dR_{sum} < 0.2$ && $dl_{asy} < 0.2$ mm && $dl_{average} > 0.2$ mm

Collimation in (η, ϕ) space:

$$dR_{sum} = \Delta R(\vec{1}, \vec{2}) + \Delta R(\vec{2}, \vec{3}) + \Delta R(\vec{1}, \vec{3})$$

Length matching:

$$dl_{asy} = |dl_1 - dl_2| + |dl_1 - dl_3| + |dl_2 - dl_3|$$

- mass: corrected mass < 1.8 GeV

$$\sqrt{M_{3\pi}^2 + p_{3\pi}^2 \sin^2 \theta + p_{3\pi} \sin \theta}$$

θ: angle between \vec{V}_{2nd} and $\vec{p}_{3\pi}$
Last Two Cuts

- Corrected mass from 3 pions

\[\sqrt{M_{3\pi}^2 + p_{3\pi}^2\sin^2\theta + p_{3\pi}\sin\theta} \]

\[\theta: \text{angle between } \vec{V}_{2nd} \text{ and } \vec{p}_{3\pi} \]

- Secondary vertex and corresponding decay length reconstructed from paired pion tracks
Detector Simulation: sPhenix and ECCE

sPHENIX

\[-1.1 < \eta < 1.1\]

sPHENIX-EIC -> ECCE

\[-3.5 < \eta < 3.5\]

sPHENIX:
- Next generation RHIC detector
- Foundation for the selected EIC detector-1 proposal [arXiv:1402.1209]

Full detector simulation: https://github.com/sPHENIX-Collaboration/coresoftware
- GEANT4 Simulation framework, well developed.
- Analyses including vertexing and tracking have been implemented in heavy flavor studies.
Vertex Detector: MAPS-based silicon

- For initial τ-reco evaluation: sPHENIX vertex tracker
 - 30 μm ALICE Pixel MAPS pixel in three layers, total 200 M pixel channels
 - 5 μm hit position resolution
 - 0.3% X_0 thickness per layer
 - $R \sim 2$ cm.

MVTX — Monolithic-Active-Pixel-Sensor-based Vertex Detector

Service cone: signal, power, cooling and mechanical support
LQ event at sPhenix-EIC detector

- LQGENEP 1.0 Leptoquark event e+p 18x275 GeV/c + sPHENIX-EIC sim
- For initial τ-reco evaluation: sPHENIX vertex tracker
Simplified secondary vertex reconstruction

Generator level

Tag 3-prong candidate with truth tau direction

Significantly long reconstructed decay length at Tau side

Tau side: Clear correlations between 3 reconstructed decay length

NonTau: $\Delta R(\tau - \text{seed}) > 1$

Away side: No correlations between 3 pair combination
Simplified secondary vertex reconstruction

Full Geant4 of sPHENIX

Tag 3-prong candidate with truth tau direction

Significantly long reconstructed decay length at Tau side

Tau side:
Clear correlations between 3 pair combination

Away side:
No correlations between 3 pair combination
Effect of resolution

- Vertex resolution at x component \(\sim 10 \, \mu m \)
- Similar for y and z components at middle rapidity
- Decay length resolution \(\sim 190 \, \mu m \)

Similar algorithm applied as for Generator level analysis
Efficiency with Detector Effects

- PrVtx: good primary vertex
- 3-pion: only accept for 3-pion events (assuming 100% PID)
- AlignMissingPt: 3-pion should be at the “missing-pT” side azimuthally
- Vertex: match reconstructed secondary vertexes, decay length > 1 mm

Similar algorithm applied as for Generator level analysis

~1.4% (~9.3% out ~15% 3-prong) signal efficiency from sPHENIX detector simulation
Moved to ECCE Vertex/Tracking

- ECCE hybrid tracking detector design
 - **MAPS** based silicon vertex/tracking
 - mRWell tracking subsystem
 - AC-LGAD outer tracker

Thanks to ECCE Software working group!

ECCE tracking, arXiv: 2205.09185
Vertex reconstruction

- With ECCE hybrid tracking detector design
 - Primary vertex x-component 20~30 microns
 - Secondary vertex reconstructed for tau candidates
Vertex reconstruction

- Decay length resolution $\sim 119 \, \mu m$
- Similar selection cuts
- photo-production backgrounds included in addition to NC and CC
- Still lack of statistics for background simulation especially for NC and Photo-production
Summary

- EIC with high \(10^{34}/\text{cm}^2/\text{s}\) luminosity opens opportunities for Charged Lepton Flavor Violation search
 - Benchmarking \(e \rightarrow \tau\) search with Leptoquark models
- LQGENEP generator + Full detector simulations and reconstruction via sPHENIX and ECCE concept
 - Explore the potential of CLFV search with decay topological using modern precision vertex tracker and event shape analysis

Next step

- 3-prong
 - Optimize selection cuts; apply Multi-Variable Analysis (MVA)
 - Take use of different sub-detector systems: Calorimeters, PID, etc
- Explore the 1-prong decays
 - Devise independent cuts for single muon and single pion modes
Backup
Experimental Searches of Leptoquarks

e^+e^-

$pp / p\bar{p}$