

Search for leptoquark mediated e-to-tau transit at EIC

Jinlong Zhang (Shandong University)

Based on work with Abhay Deshpande (SBU/BNL/CFNS), Jin Huang (BNL), Krishna Kumar (UMass, Amherst), Yuxiang Zhao (IMP,CAS) and ECCE EW/BSM WG

Electron Injector

RHIC&AGS Users' Meeting 2022

Charged Lepton Flavor Violation

- Lepton Flavor (generation) is not conserved, neutrino oscillations observed. (2015 Nobel Prize)
- Charged lepton flavor violations (CFLV) should also be allowed within the SM; but extremely low rate, e.g. BR(μ → eγ) < 10⁻⁵⁴
- Many BSM models predict significantly higher rate of CFLV, e.g. SUSY slepton mixing BR($\mu \rightarrow e \gamma$) < 10⁻¹⁵

Experimental Searches of CLFV(1,2)

- LFV(1,2): Extensive searches for have placed stringent experimental limits.
 - SINDRUM-II, MEGA, SINDRUM Belle, BaBar, Mu2e,
- LFV(1,3): Several orders of magnitude **weaker** limits than LFV(1,2)

$e \rightarrow \tau$ conversion at ep collision

Various models predict enhanced sensitivity for LFV(1,3) while suppressing LFV(1,2)

- Leptoquark models provide a good benchmark to study sensitivity
 Gonderinger, Ramsey-Musolf, JHEP (2010) 2010: 45
- HERA set limits in coupling-mass space for LQ production in e-p scatterings
- At the EIC, with much higher luminosity,
 10³⁰⁻³¹ → 10³³⁻³⁴ cm⁻²s⁻¹, ~2 orders of magnitude improvement of the sensitivity is expected

New discovery space: $e \rightarrow \tau$ conversion

Assume 0.1 fb cross-section sensitivity

Leptoquark

Leptoquarks (LQs) appear in certain extensions of the SM.

- Symmetry between lepton sector and quark sector
- Flavor violating but fermion number (F = 3B+L) conserving
- Buchmüller-Rückl-Wyler (BRW) framework: 14 different LQ types (7 scalars, 7 vectors)
- CLFV at tree level processes; allow coupling between same and different generations of quarks and leptons at initial state and final state

Goal of this Study at EIC

- Replace electron with tau
- Tau back-to-back with current jet
- Primary vertex reconstructed from tracks of current jets
- Tau vertex displaced at mm level
 - 3-prong tau jet; decay topology important for τ jet ID
 - 1-prong: recovering higher branching ratios; but background control is much more demanding

Tau decay mode and branching ratio

_	3-prong	15.21 (0.06)%
	$-\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$	9.31 (0.05)%
	$- \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$	4.62 (0.05)%
	- others (kaon, etc)	1.28%
_	1-prong	84.58 (0.06)%
	$-\mu^-\bar{\nu}_\mu\nu_ au$	17.39 (0.04)%
	$-e^{-\overline{\nu}_e}\nu_{ au}$	17.82 (0.04)%
	- $\pi^- \nu_{\tau}$	10.82 (0.05)%
	$- \pi^{-} \pi^{0} \nu_{\tau}$	25.49 (0.09)%
	$- \pi^{-2}\pi^{0}\nu_{\tau}$	9.26 (0.10)%
	$- \pi^{-3}\pi^{0}\nu_{\tau}$	1.04 (0.07)%
	- others (kaon, etc)	3.24%
_	others	0.21%

HERA Efficiency ~2.5%

At EIC, benefit from improved vertex and jet detection, aim to greater than 10% efficiency with negligible background in a 100 fb⁻¹ data sample

How LQ Tau looks like in ep

7

Features of LQ $e \rightarrow \tau$ event

Note: electron in DIS NC is masked; Fastjet, Anti- k_T , R = 1.0; jet pt > 2 GeV; Q²>100 GeV²

- $e \rightarrow \tau$ event
 - 2+ jets
 - Low particle multiplicity
 - Modest missing pT (partial tau pT)

- DIS event
 - 1 jets dominating
 - Higher particle multiplicity
 - Missing pT ~ lepton pT

Search strategy for 3-prong decays

- Event generators:
 - LQGENEP 1.0 for Leptoquark events (L. Bellagamba, 2001)
 - DJANGOH 4.6.8 and pythiaeRHIC (pythia6) for DIS (NC + CC) events
 - Jets reconstructed from MC events
 - Fastjet, Anti- k_T , R = 1.0
 - Scattered electron for SM DIS and neutrinos excluded
- Secondary vertex finding from $\pi^-\pi^+\pi^-$

Events Selection

- di-jet: number of jets >= 2
- **–** bk2bk: $cos\Delta\phi_{jet1-jet2}$ < -0.7
- jetmulti: number of particles < 5 for at least one of the jets
- jetpt: p_T (jet1) > 4.0 and p_T (jet2) > 2.5
- 3pi: jet contain 3pi
- tau3pi: 3pi jet aligns with missing p_T

vertex: dR_sum < 0.2 && dl_asy < 0.2 mm && dl_average > 0.2 mm

Collimation in (η, ϕ) space:

$$dR_sum = \Delta R(\overrightarrow{1}, \overrightarrow{2}) + \Delta R(\overrightarrow{2}, \overrightarrow{3}) + \Delta R(\overrightarrow{1}, \overrightarrow{3})$$

Length matching:

$$dl_{-}asy = |dl_1 - dl_2| + |dl_1 - dl_3| + |dl_2 - dl_3|$$

- mass: corrected mass < 1.8 GeV

$$\sqrt{M_{3\pi}^2 + p_{3\pi}^2 sin^2\theta} + p_{3\pi} sin\theta$$

 θ : angle between $\overrightarrow{V_{2nd}}$ and $\overrightarrow{p_{3\pi}}$

Last Two Cuts

Corrected mass from 3 pions

$$\sqrt{M_{3\pi}^2 + p_{3\pi}^2 sin^2\theta} + p_{3\pi} sin\theta$$

 θ : angle between $\overrightarrow{V_{2nd}}$ and $\overrightarrow{p_{3\pi}}$

 Secondary vertex and corresponding decay length reconstructed from paired pion tracks

Detector Simulation: sPhenix and ECCE

- sPHENIX:
- Next generation RHIC detector
- Foundation for the selected EIC detector-1 proposal [arXiv:1402.1209]

Full detector simulation: https://github.com/sPHENIX-Collaboration/coresoftware

- GEANT4 Simulation framework, well developed.
- Analyses including vertexing and tracking have been implemented in heavy flavor studies.

Vertex Detector: MAPS-based silicon

- For initial τ-reco evaluation: sPHENIX vertex tracker
 - 30 µm ALICE Pixel MAPS pixel in three layers, total 200 M pixel channels
 - 5 μm hit position resolution
 - 0.3% X₀ thickness per layer
 - R ~2cm.

state-of-the-art vertex detector

MVTX — Monolithic-Active-Pixel-Sensor-based Vertex Detector

Service cone: signal, power, cooling and mechanical support

LQ event at sPhenix-EIC detector

- LQGENEP 1.0 Leptoquark event e+p 18x275 GeV/c + sPHENIX-EIC sim
- For initial τ-reco evaluation: sPHENIX vertex tracker

Simplified secondary vertex reconstruction

Generator level

Tau side:
Clear correlations
between 3
reconstructed decay
length

Significantly long reconstructed decay length at Tau side

Away side:
No correlations
between 3 pair
combination

Simplified secondary vertex reconstruction

Full Geant4 of sPHENIX

Tau side: Clear correlations between 3 pair combination

Significantly long reconstructed decay length at Tau side

Away side:
No correlations
between 3 pair
combination

Effect of resolution

- Vertex resolution at x component \sim **10** μm
- Similar for y and z components at middle rapidity
- Decay length resolution \sim 190 μm

 Similar algorithm applied as for Generator level analysis

Efficiency with Detector Effects

- PrVtx: good primary vertex
- 3-pion: only accept for 3-pion events (assuming 100% PID)
- AlignMissingPt: 3-pion should be at the "missing-pT" side azimuthally
- Vertex: match reconstructed secondary vertexes, decay length > 1 mm

- Similar algorithm applied as for Generator level analysis
- ~1.4% (~9.3% out ~15% 3-prong) signal efficiency from sPHENIX detector simulation

Moved to ECCE Vertex/Tracking

- ECCE hybrid tracking detector design
 - MAPS based silicon vertex/tracking
 - mRWELL tracking subsystem
 - AC-LGAD outer tracker

Thanks to ECCE Software working group!

ECCE tracking, arXiv: 2205.09185

Vertex reconstruction

- With ECCE hybrid tracking detector design
 - Primary vertex x-component 20~30 microns
 - Secondary vertex reconstructed for tau candidates

Vertex reconstruction

– Decay length resolution ~ 119 μm

Tau search performance

- Similar selection cuts
- photo-production backgrounds included in addition to NC and CC
- Still lack of statistics for background simulation especially for NC and Photo-production

Summary

- EIC with high (10³⁴/cm²/s) luminosity opens opportunities for Charged Lepton Flavor Violation search
 - Benchmarking e→τ search with Leptoquark models
- LQGENEP generator + Full detector simulations and reconstruction via sPHENIX and ECCE concept
 - Explore the potential of CLFV search with decay topological using modern precision vertex tracker and event shape analysis

Next step

- 3-prong
 - Optimize selection cuts; apply Multi-Variable Analysis (MVA)
 - Take use of different sub-detector systems: Calorimeters, PID, etc
- Explore the 1-prong decays
 - Devise independent cuts for single muon and single pion modes

Backup

Experimental Searches of Leptoquarks

