Recent spin results from PHENIX

Zhongling Ji
for the PHENIX Collaboration

UCLA
RHIC & AGS 2022
June 8, 2022
Outline

1. Experimental setup

2. Longitudinal double spin asymmetry A_{LL}
 - Direct photon
 - Jet
 - Charged pion

3. Transverse single spin asymmetry A_N
 - Direct photon
 - π^0 and η
 - Charged pion
 - Open heavy flavor
 - Forward neutron

4. Summary
PHENIX detector

- $|\eta| < 0.35$ and π coverage for ϕ.
- EMCal: primary detector for photons.
- EMCal trigger: select high energy particles.
- DC: measure charged particles.
- PC3: track matching.
- RICH: PID from Čerenkov light.
Probing the gluon spin inside the proton

- The proton spin can be decomposed as

\[
\frac{1}{2} = \frac{1}{2} \sum_q \Delta q + \Delta g + L_q + L_g
\]

- Gluon spin \(\Delta g\) is important for the proton spin puzzle.

\[A_{LL}^{pp \to \gamma X} \sim \frac{\Delta q(x_q)}{q(x_q)} \cdot \frac{\Delta g(x_g)}{g(x_g)} \cdot a_{LL}^{qg \to \gamma q}\]

\[A_{LL} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}\]

- Little fragmentation contributions to direct photon production.

Zhongling Ji (UCLA)
Jet and charged pion production

- Larger statistics: not suppressed by small QED coupling.
- RHIC 200 GeV data probe $0.05 < x < 0.2$.
- RHIC 510 GeV data probe $0.02 < x < 0.08$.

Figure 2: Relative contributions of different partonic subprocesses contributing to inclusive π^\pm (left panel) and jet production (right panel) as a function of x_T. Only minor differences can be seen when going from $\sqrt{s} = 200$ GeV to 500 GeV. At low x_T, gluon-gluon scattering dominates, followed by quark-gluon scattering at higher x_T. At very high x_T, quark-quark scattering eventually becomes the dominant production channel.

Table 2-1: Current nuclear physics performance milestones related to the RHIC $p+p$ physics program. In the following sections we will describe how these questions have been and will be addressed by the RHIC spin physics program in the next years.

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>HP8</td>
<td>Measure flavor-identified and contributions to the spin of the proton via the longitudinal-spin asymmetries of W production.</td>
</tr>
<tr>
<td>2013</td>
<td>HP12</td>
<td>Utilize polarized proton collisions at center of mass energies of 200 and 500 GeV, in combination with global QCD analyses, to determine if gluons have appreciable polarization over any range of momentum fraction between 1 and 30% of the momentum of a polarized proton.</td>
</tr>
<tr>
<td>2015</td>
<td>HP13</td>
<td>Test unique QCD predictions for relations between single-transverse spin phenomena in $p-p$ scattering and those observed in deep–inelastic lepton scattering.</td>
</tr>
</tbody>
</table>

Zhongling Ji (UCLA)
Recent spin results from PHENIX
June 8, 2022 5 / 25
From A_{LL} to Δg

- Existing RHIC data mainly probe $0.05 < x_g < 0.2$.
- PHENIX $\pi^0 A_{LL}$ at 510 GeV confirms a nonzero Δg and extend x_g to 0.01.
- STAR jet data clearly imply a polarization of gluons in this range.
- Results from γ, jet and π^\pm will add additional independent constraints on the Δg.

\[
\int dx \, \Delta g(x) \\
0.001 \quad 0.05 \\
\int dx \, \Delta g(x) \\
1 \\
0.05
\]

\[
Q^2 = 10 \text{ GeV}^2
\]

PRL 113, 012001 (2014)

Zhongling Ji (UCLA)

Recent spin results from PHENIX

June 8, 2022
Identifying direct photon through isolation

\[r_{\text{cone}} = \sqrt{(\delta \eta)^2 + (\delta \phi)^2} = 0.5 \]

Isolation cut requirement:
\[\sum E_{\text{in cone}} < 0.1 E_\gamma \]

Quark-gluon Compton scattering: Easy to pass isolation cut

Fragmentation: Hard to pass isolation cut

Bremsstrahlung: Hard to pass isolation cut
Direct photon cross section

- Consistent with NLO pQCD.
- MPI and parton shower are important for inclusive direct photon production.
- Constrain unpolarized gluon PDF.
Direct photon A_{LL}

- Consistent with NLO DSSV14.
- Will be the first published direct photon A_{LL}.
- Constrain polarized gluon PDF Δg.

![Graph showing A_{LL} as a function of p_T with data points and error bars plotted against a theoretical curve.](arXiv:2202.08158)
Jet cross section

- Calculation from NLO + ln(R) resummation overestimates data.
- The calculation is at partonic level: MPI and parton shower are important.
- Similar observation from CMS, for small \(R \) anti-\(k_T \).
Jet A_{LL}

- Consistent with DSSV14 at NLO + ln(R) resummation.
- Independent constraint on polarized gluon PDF Δg.
- Uncertainty are correlated due to unfolding.
Charged pion A_{LL}

PRD 102, 032001 (2020)
Consistent with DSSV14.

510 GeV data probe low x range.
Not enough statistics to decide π^\pm order.
Transverse Single Spin Asymmetry (TSSA)

\[A_N = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow} \]
Origin of TSSA: TMD

When $Q \gg k_T \gtrsim \Lambda_{QCD}$:

Quark correlation matrix $\Phi^\alpha{}_{\beta}(x, k_T) \sim$

$$\langle P, S | \bar{q}_\beta(\xi_-, \xi_T) W^- (\xi_-, \infty) W^T (\xi_T, \infty) \times W^T (\infty, 0) W^- (-\infty, 0) q^\alpha (0_-, 0_T) | P, S \rangle$$

$Tr[\Gamma \gamma^+ \Phi(x, k_T)] \rightarrow$ TMD functions

[Progress in Particle and Nuclear Physics 65, 267]

Nucleon Spin
Quark Spin

$\Gamma : 1 \quad \gamma^5 \quad \gamma' \gamma^5$
Origin of TSSA: Collinear twist-3

\[\Phi^{(3)}(x_1, x_2, S_T) \sim q g q : \langle P, S_T | \bar{q}(x_2 P) \gamma^+ \epsilon_{ij} G^i_{T} q(x_1 P) | P, S_T \rangle \]

\[g g g : C_{abc} G^+_a \epsilon_{ij} G^i_{T} g^j_{S_T} G^c_{T} , \quad C_{abc} = if_{abc} \text{ or } d_{abc} \]

\[\Delta \sigma_{CO}(S_T) \approx \Phi^{(3)}(x_1, x_2, S_T) \otimes \Phi^{(2)}(x') \otimes \hat{\sigma} \otimes D^{(2)}(z) \rightarrow \text{Sivers type} \]

\[\Delta \sigma_{CO}(S_T) = \Delta \sigma_{TMD}(S_T) \text{ at leading } k_T/Q. \]

\[\Phi^{(3)}(x, x, S_T) \sim \int d^2k_T(k_T^2/M_P)f^{1\perp}_T(x, k_T), \]

\[\Delta \sigma_{CO}(S_T) = \Delta \sigma_{TMD}(S_T) \text{ at leading } k_T/Q. \]
Direct photon A_N

- First direct photon A_N.
- Measured A_N consistent with zero.
- Small contribution from qgq correlation.
- Clean extraction of ggg correlation.
- ggg models have different gluon PDFs.
- Constrain gluon spin-momentum correlations.

![Graph showing A_N vs. p_T](image-url)

PHENIX

$|\eta| < 0.35$, $s = 200$ GeV, $|\eta| < 0.35$
\[\pi^0 \text{ and } \eta \, A_N \]

PHENIX $p^+ \! + \! p, \sqrt{s} = 200 \text{ GeV, } |\eta| < 0.35$

- $p^+ + p \rightarrow \pi^0 + X$
- $p^+ + p \rightarrow \eta + X$

PHENIX $p^+ + p \rightarrow \pi^0 + X, \sqrt{s} = 200 \text{ GeV, } |\eta| < 0.35$

- Small qgq and constrain ggg.
- Sivers TMD PDF: GPM and CGI-GPM.
- CPI-GPM include initial- and final-interactions to reproduce Sivers sign change.
- Scenario 1 (2) maximize (minimize) open heavy flavor TSSA.

- PRD 103, 052009 (2021)
- Improved stat. uncertainty.
- Consistent with previous measurement and with zero.
- A^π_N vs A^η_N: strangeness, isospin and mass.
Charged pion A_N

- Low statistics due to few π^\pm fire triggers.
- $\chi^2 \approx 9$ (ndf = 5) between π^\pm.
- Indicate differences between π^\pm.

![Graph showing A_N vs. p_T]
Open heavy flavor e^{\pm} A_N in p+p

- Signal: OHF decay e^{\pm}.
- Backgrounds:
 - e^{\pm} from π^0, η, γ^{dir}, J/ψ, K^0_S, K^{\pm}.
 - Misidentified e^{\pm} (primary π^{\pm}).
- Mainly from gg hard interactions.
 → Sensitive to ggg correlators $T_G^{(f,d)}$.

$$A_N(p^+p \rightarrow \text{HF}(e^{+/−}) + X)$$

$\sqrt{s} = 200$ GeV

$|\eta| < 0.35$

PHENIX

Theory: PRD78, 114013

$A_N^{D^0/D^0} \rightarrow e^{ε^+}(\lambda_f, \lambda_d)$

$$T_G^{(f,d)}(x, x) = \lambda_{f,d} G(x)$$

arXiv:2204.12899

Zhongling Ji (UCLA)

Recent spin results from PHENIX

June 8, 2022
Forward neutron A_N in $p+p$

- Mainly from π-R interference in hadronic interactions.
- Negative A_N with linear p_T dependence.

\[
\sum \pi \rightarrow p\rightarrow Rp
\]

π-R interference

PRD 84, 114012 (2011)
Forward neutron A_N in p+A

- UPC: Positive A_N with Z^2 dependence.
- $A_N^{UPC+HAD} = \frac{\sigma_{UPC}A_N^{UPC} + \sigma_{HAD}A_N^{HAD}}{\sigma_{UPC} + \sigma_{HAD}}$
- PRC 95, 044908 (2017)

- ZDC⊗BBC-tag($N \cap S$): Select hadronic interactions.
- ZDC⊗BBC-veto($\bar{N} \cap \bar{S}$): Select UPC interactions.
- Strong A dependence in inclusive and BBC-veto.
- PRL 120, 022001 (2018)
Forward neutron A_N vs p_T and x_F
Gluon spin is important for proton spin decomposition and the proton spin puzzle.
Direct photon production have little fragmentation contributions.
Jet and π^\pm production have larger statistics.
Contribute to future global analyses together with forward cluster and forward/central η A_{LL}.
TSSA measurements from γ, π^0, η, π^\pm, OHF e^\pm are important to understand the qgq and ggg correlations in collinear twist-3 formalism as well as the TMD functions.
Forward neutron A_N in p+A results from both hadronic and EM interactions.
Backup
Processes

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Dom. partonic process</th>
<th>probes</th>
<th>LO Feynman diagram</th>
</tr>
</thead>
</table>
| $\overline{p}p \rightarrow \pi + X$ | $\overline{g} \overline{g} \rightarrow gg$
 $\overline{q} \overline{g} \rightarrow qg$ | Δg | ![Feynman Diagram](image1.png) |
| $\overline{p}p \rightarrow \text{jet(s)} + X$ | $\overline{g} \overline{g} \rightarrow gg$
 $\overline{q} \overline{g} \rightarrow qg$ | Δg | ![Feynman Diagram](image2.png) (as above) |
| $\overline{p}p \rightarrow \gamma + X$
 $\overline{p}p \rightarrow \gamma + \text{jet} + X$
 $\overline{p}p \rightarrow \gamma \gamma + X$ | $\overline{q} \overline{g} \rightarrow \gamma q$
 $\overline{q} \overline{g} \rightarrow \gamma q$
 $\overline{q} \overline{q} \rightarrow \gamma \gamma$ | Δg
 Δg
 $\Delta q, \Delta \overline{q}$ | ![Feynman Diagram](image3.png)
 ![Feynman Diagram](image4.png)
 ![Feynman Diagram](image5.png) |
| $\overline{p}p \rightarrow DX, BX$ | $\overline{g} \overline{g} \rightarrow c\overline{c}, b\overline{b}$ | Δg | ![Feynman Diagram](image6.png) |