Recent spin results from PHENIX

Zhongling Ji for the PHENIX Collaboration

UCLA

RHIC & AGS 2022

June 8, 2022

Outline

1. Experimental setup

2. Longitudinal double spin asymmetry A_{LL}

Direct photon

Jet

Charged pion

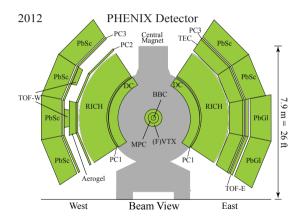
3. Transverse single spin asymmetry A_N

Direct photon

 π^{0} and η

Charged pion

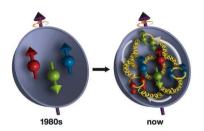
Open heavy flavor

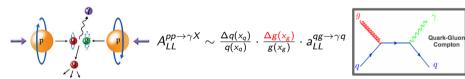

Forward neutron

4. Summary

PHENIX detector

- $|\eta| < 0.35$ and π coverage for ϕ .
- EMCal: primary detector for photons.
- EMCal trigger: select high energy particles.
- DC: measure charged particles.
- PC3: track matching.
- RICH: PID from Čerenkov light.

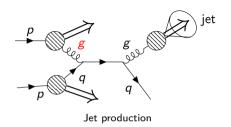

Probing the gluon spin inside the proton

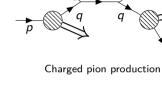


The proton spin can be decomposed as

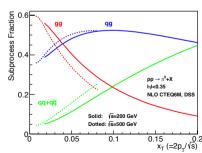
$$\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + \Delta g + L_q + L_g$$

• Gluon spin Δg is important for the proton spin puzzle.

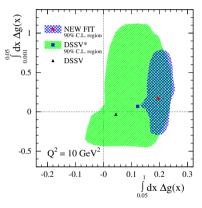




- $A_{LL} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_{++} \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$
- Little fragmentation contributions to direct photon production.

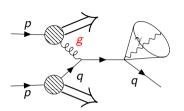

Jet and charged pion production

- Larger statistics: not suppressed by small QED coupling.
- RHIC 200 GeV data probe 0.05 < x < 0.2.
- RHIC 510 GeV data probe 0.02 < x < 0.08.



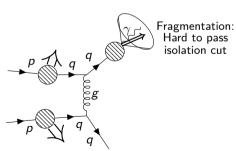
g

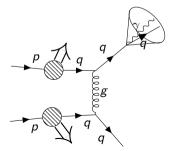
From A_{LL} to Δg


- Existing RHIC data mainly probe $0.05 < x_{\sigma} < 0.2$.
- PHENIX π^0 A_{LL} at 510 GeV confirms a nonzero Δg and extend x_g to 0.01.
- STAR jet data clearly imply a polarization of gluons in this range.
- Results from γ , jet and π^{\pm} will add additional independent constraints on the Δg .

PRL 113, 012001 (2014)

Identifying direct photon through isolation

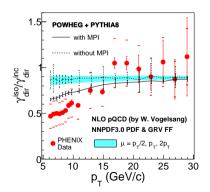


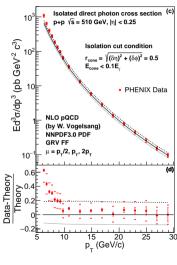

$$r_{cone} = \sqrt{(\delta \eta)^2 + (\delta \phi)^2} = 0.5$$

Isolation cut requirement:

$$\sum E_{in\,cone} < 0.1 E_{\gamma}$$

Quark-gluon Compton scattering: Easy to pass isolation cut

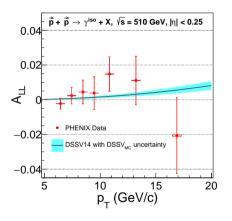



Bremsstrahlung: Hard to pass isolation cut

Direct photon cross section

UCLA

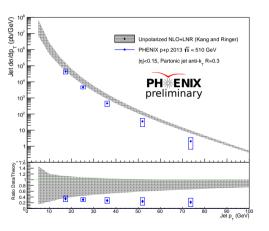
- Consistent with NLO pQCD.
- MPI and parton shower are important for inclusive direct photon production.
- Constrain unpolarized gluon PDF.



arXiv:2202.08158

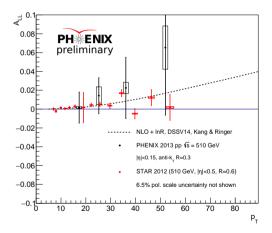
Direct photon A_{LL}

- Consistent with NLO DSSV14.
- Will be the first published direct photon A_{LL} .
- Constrain polarized gluon PDF Δg .

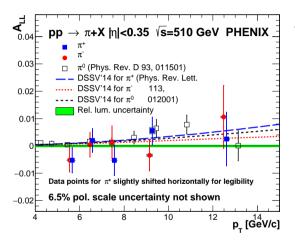


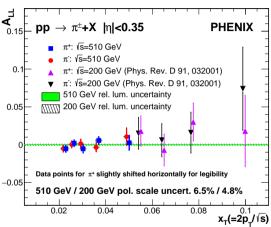
arXiv:2202.08158

Jet cross section

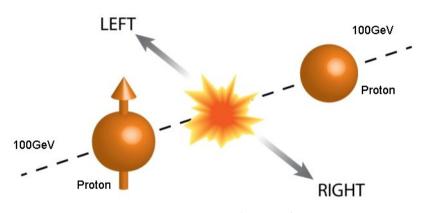

- Calculation from NLO + In(R) resummation overestimates data.
- The calculation is at partonic level: MPI and parton shower are important.
- Similar observation from CMS, for small R anti- k_T .

Jet A_{LL}




- Consistent with DSSV14 at NLO + In(R) resummation
- Independent constraint on polarized gluon PDF Δg .
- Uncertainty are correlated due to unfolding.

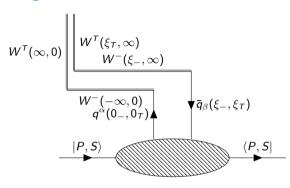
Charged pion A_{LL}



- PRD 102, 032001 (2020)
- Consistent with DSSV14.

- 510 GeV data probe low x range.
- Not enough statistics to decide π^{\pm} order.

Transverse Single Spin Asymmetry (TSSA)



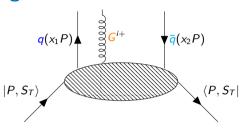
$$A_{N}=rac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}$$

Origin of TSSA: TMD

Quark Spin

When $Q \gg k_T \gtrsim \Lambda_{QCD}$: Quark correlation matrix $\Phi^{\alpha}_{\beta}(x, \mathbf{k_T}) \sim$ $\langle P, S | \bar{q}_{\beta}(\xi_{-}, \xi_{T}) W^{-}(\xi_{-}, \infty) W^{T}(\xi_{T}, \infty) \times$ $W^{T}(\infty,0)W^{-}(-\infty,0)q^{\alpha}(0_{-},0_{T})|P.S\rangle$

Leading Twist TMDs Nucleon						
			Quark Polarization			
		Un-Polarized (U)	Longitudinally Polarized (L)			
				ı		


Transversely Polarized S_{L} S_{T} S_{T

$$Tr[\Gamma \gamma^+ \Phi(x, \mathbf{k_T})] \to \mathsf{TMD}$$
 functions

[Progress in Particle and Nuclear Physics 65, 267]

Origin of TSSA: Collinear twist-3

[PRL 67, 2264] When $Q, k_T \gg \Lambda_{OCD}$:

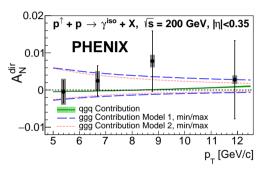
Collinear twist-3 function $\Phi^{(3)}(x_1, x_2, S_T) \sim$

$$\langle P, S_T | qgq : \langle P, S_T | \bar{q}(x_2P)\gamma^+ \epsilon_{ij} G^{i+} S_T^j q(x_1P) | P, S_T \rangle$$

$$ggg : C^{abc} G^+_{a\rho} \epsilon_{ij} G^{i+}_b S^j_T G^{\rho+}_c, C^{abc} = if^{abc} \text{ or } d^{abc}$$

$$\Delta\sigma_{CO}(S_T) \approx \Phi^{(3)}(x_1, x_2, S_T) \otimes \Phi^{(2)}(x') \otimes \hat{\sigma} \otimes D^{(2)}(z) \rightarrow \text{Sivers type}$$
[PRD 59, 014004] $+ \delta q^{(2)}(x, S_T) \otimes \Phi^{(3)}(x_1', x_2') \otimes \hat{\sigma}' \otimes D^{(2)}(z) \rightarrow \text{Boer-Mulders type}$
 $+ \delta q^{(2)}(x, S_T) \otimes \Phi^{(2)}(x') \otimes \hat{\sigma}'' \otimes D^{(3)}(z_1, z_2) \rightarrow \text{Collins type}$

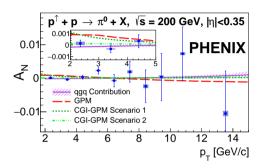
[PRL 97, 082002] When $Q \gg k_T \gg \Lambda_{QCD}$, relation between collinear twist-3 and TMD:


$$\Phi^{(3)}(x,x,S_T) \sim \int d^2\mathbf{k_T}(k_T^2/M_P) f_{1T}^{\perp}(x,\mathbf{k_T}),$$

 $\Delta \sigma_{CO}(S_T) = \Delta \sigma_{TMD}(S_T)$ at leading k_T/Q .

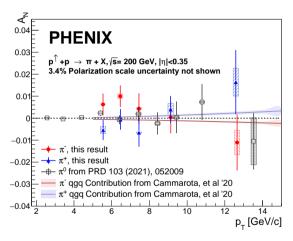
Direct photon A_N

- First direct photon A_N .
- Measured A_N consistent with zero.
- Small contribution from ggg correlation.
- Clean extraction of ggg correlation.
- ggg models have different gluon PDFs.
- Constrain gluon spin-momentum correlations.


PRL 127, 162001 (2021)

π^0 and η A_N

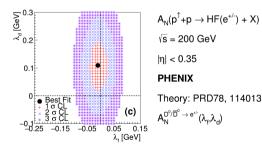
- PRD 103, 052009 (2021)
- Improved stat. uncertainty.
- Consistent with previous measurement and with zero.
- $A_N^{\pi^0}$ vs A_N^{η} : strangeness, isospin and mass.

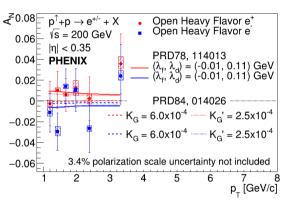


- Small qgq and constrain ggg.
- Sivers TMD PDF: GPM and CGI-GPM.
- CPI-GPM include initial- and finalinteractions to reproduce Sivers sign change.
- Scenario 1 (2) maximize (minimize) open heavy flavor TSSA.

Charged pion A_N

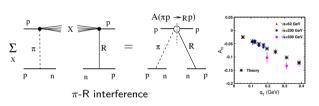
- Low statistics due to few π^{\pm} fire triggers.
- $\chi^2 \approx 9$ (ndf = 5) between π^{\pm} .
- Indicate differences between π^{\pm} .



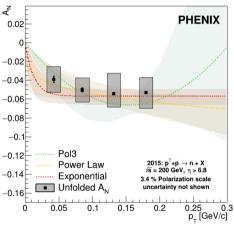

PRD 105, 032003 (2022)

Open heavy flavor e^{\pm} A_N in p+p

- Signal: OHF dacay e^{\pm} .
- Backgrounds:
 - e^{\pm} from π^0 , η , γ^{dir} , J/ψ , K_S^0 , K^{\pm} .
 - Misidentified e^{\pm} (primary π^{\pm}).
- Mainly from gg hard interactions
 - \rightarrow Sensitive to ggg correlators $T_G^{(f,d)}$.



arXiv:2204.12899

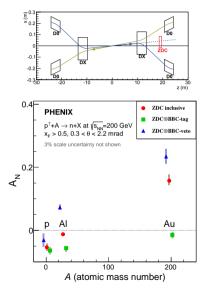

Forward neutron A_N in p+p

- Mainly from π -R interference in hadronic interactions.
- Negative A_N with linear p_T dependence.

PRD 84, 114012 (2011)

PRD 103, 032007 (2021)

Forward neutron A_N in p+A

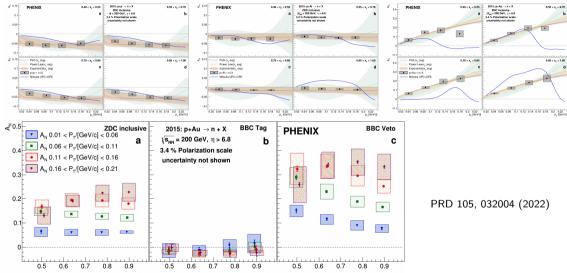


• UPC: Positive A_N with Z^2 dependence.

•
$$A_N^{ ext{UPC}+ ext{HAD}} = rac{\sigma_{ ext{UPC}}A_N^{ ext{UPC}} + \sigma_{ ext{HAD}}A_N^{ ext{HAD}}}{\sigma_{ ext{UPC}} + \sigma_{ ext{HAD}}}$$

• PRC 95, 044908 (2017)

- ZDC \otimes BBC-tag($N \cap S$): Select hadronic interactions.
- ZDC \otimes BBC-veto($\overline{N} \cap \overline{S}$): Select UPC interactions.
- Strong A dependence in inclusive and BBC-veto.
- PRL 120, 022001 (2018)



Forward neutron A_N vs p_T and x_F

0.55 < x. < 0.70

0.85 c x. < 1.00

PRD 105, 032004 (2022)

June 8, 2022

Summary

- Gluon spin is important for proton spin decomposition and the proton spin puzzle.
- Direct photon production have little fragmentation contributions.
- Jet and π^{\pm} production have larger statistics.
- ullet Contribute to future global analyses together with forward cluster and forward/central η A_{LL} .
- TSSA measurements from γ , π^0 , η , π^{\pm} , OHF e^{\pm} are important to understand the qgq and ggg correlations in collinear twist-3 formalism as well as the TMD functions.
- Forward neutron A_N in p+A results from both hadronic and EM interactions.

Backup

Processes

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \to \pi + X$	$ec{g}ec{g} o gg$	Δg	gooog
	$ec{q}ec{g} ightarrow qg$		3
$\vec{p}\vec{p} \to \text{jet(s)} + X$	$ec{g}ec{g} o gg \ ec{q}ec{g} o qg$	Δg	(as above)
	$\begin{array}{c} \vec{q}\vec{g} \to \gamma q \\ \vec{q}\vec{g} \to \gamma q \end{array}$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	3
$\vec{p}\vec{p} \to \gamma\gamma + X$	$ec{q} ec{q} o \gamma \gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \to DX, BX$	$ec{g}ec{g} o car{c}, bar{b}$	Δg	33000