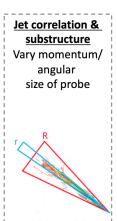
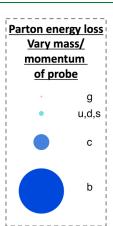
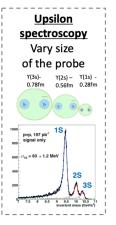
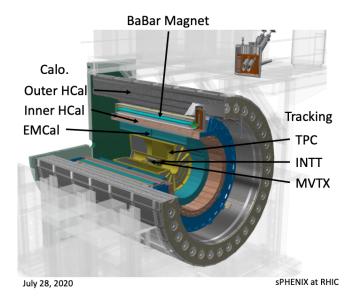
Spin and Cold QCD Physics at sPHENIX

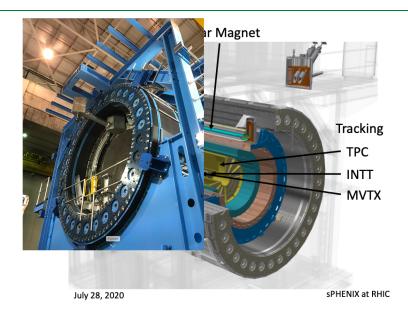

Joe Osborn

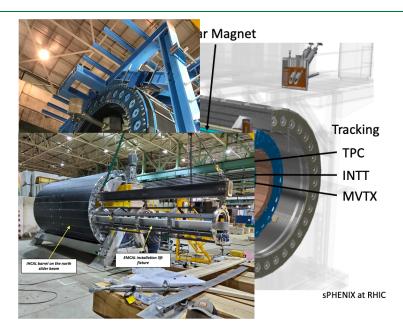

Oak Ridge National Laboratory and Brookhaven National Laboratory

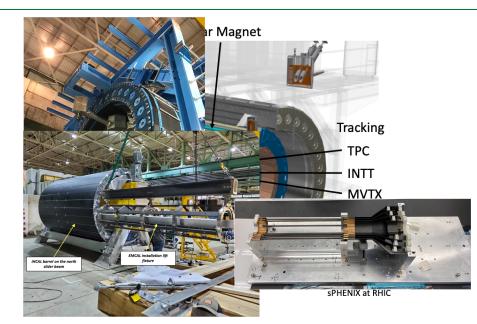

RHIC/AGS AUM 2022 June 8, 2022

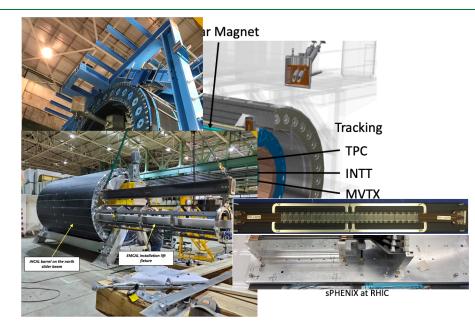
sPHENIX

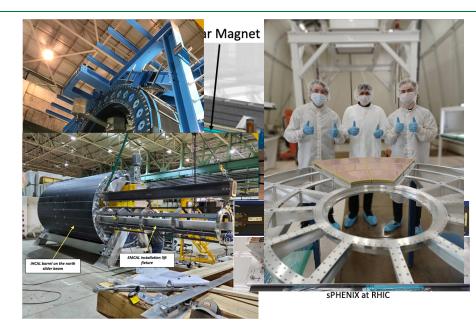


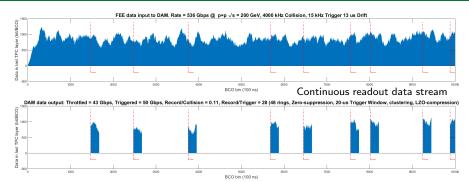







- Study QCD matter at varying temperatures for direct comparisons to LHC with rare probes
- Study partonic structure of protons and nuclei

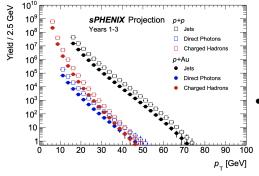




Proposed run schedule

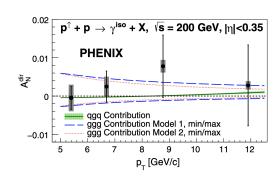
sPHENIX BUP 2022 [sPH-TRG-2022-001] 24 (28) cryo week scenarios

	Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
			[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm
	2023	Au+Au	200	24 (28)	9 (13)	$3.7~(5.7)~{ m nb}^{-1}$	4.5 (6.9) nb ⁻¹
	2024	$p^\uparrow p^\uparrow$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
						4.5 (6.2) pb ⁻¹ [10%-str]	
	2024	<i>p</i> ↑+Au	200	_	5	$0.003~{ m pb^{-1}}~[5~{ m kHz}]$	$0.11~{ m pb}^{-1}$
						$0.01~{ m pb^{-1}}~[10\%\mbox{-}str]$	
	2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) ${ m nb}^{-1}$	21 (25) nb ⁻¹


Streaming readout in 2024

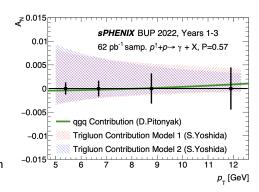
Write 20% of data @ 200 Gbps, each segment corresponding to a calorimeter trigger

- Tracking detectors capable of streaming data Archive 10% of all pp collisions in streaming mode
- Increases un-triggerable measurements by orders of magnitude, e.g. low p_T heavy flavor decays (similar to LHCb and ALICE)


cQCD kinematic reach

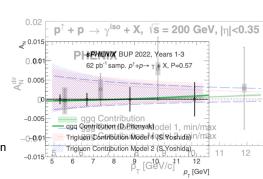
- Transversely polarized observables
 - Trigluon correlation functions: direct γ , OHF
 - Hadron A_N , pp vs. pA
 - ullet Sivers effect : dijet and γ -jet
 - Transversity via Collins FF & IFF
 : h-in-jet, dihadrons
- Unpolarized observables
 - Quarkonia polarization and hadronization: J/ψ , Υ
 - (n)PDFs: inclusive jets, dijets, γ-jet
 - (n)FFs and hadronization: hadrons, h-in-jet

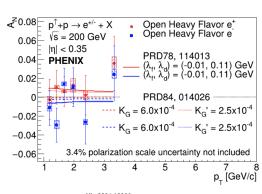
Trigluon correlator with direct γ


 PHENIX recently published first direct γ A_M from RHIC

Phys. Rev. Lett. 127, 162001 (2021)

Trigluon correlator with direct γ


- PHENIX recently published first direct γ A_M from RHIC
- sPHENIX will be able to improve upon this first measurement!
- Goal to have 2-3 bins which will help constrain trigluon contribution


sPHENIX BUP 2022

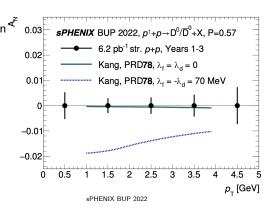
Trigluon correlator with direct γ

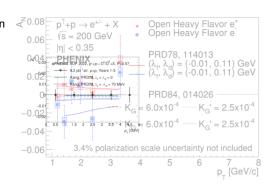
- PHENIX recently published first direct γ A_M from RHIC
- sPHENIX will be able to improve upon this first measurement!
- Goal to have 2-3 bins which will help constrain trigluon contribution



 PHENIX recently submitted open heavy flavor decay electron A_N measurement!

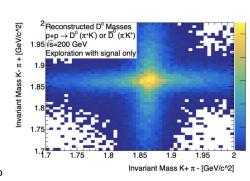
arXiv:2204.12899


- PHENIX recently submitted open heavy flavor decay electron A_N measurement!
- Constraints on gluon correlators extracted for charge separated measurements

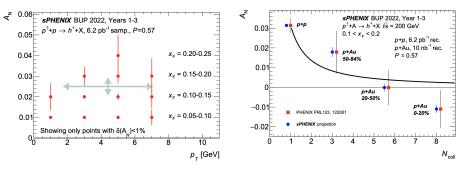

Theory: PRD78, 114013

arXiv:2204.12899

- PHENIX recently submitted open⁴
 heavy flavor decay electron A_N
 measurement!
- Constraints on gluon correlators extracted for charge separated measurements
- sPHENIX to improve upon first measurement with D⁰

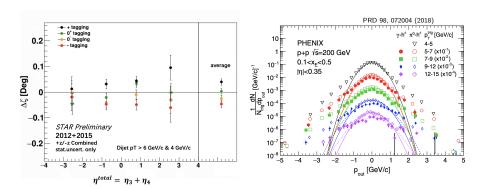


- PHENIX recently submitted open heavy flavor decay electron A_N measurement!
- Constraints on gluon correlators extracted for charge separated measurements
- sPHENIX to improve upon first measurement with D⁰

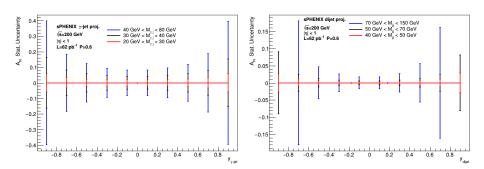


sPHENIX BUP 2022

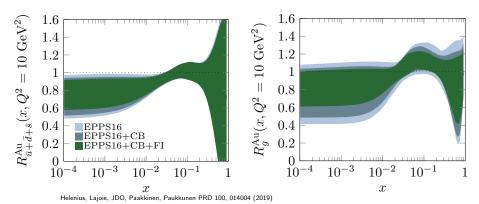
- PHENIX recently submitted open heavy flavor decay electron A_N measurement!
- Constraints on gluon correlators extracted for charge separated measurements
- sPHENIX to improve upon first measurement with D⁰
- Ongoing initial studies to use ML to separate D^0 and \bar{D}^0 signal



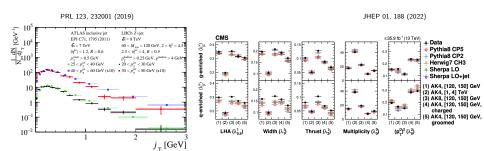
Hadron A_N in p+A


- Measured A dependence of moderately forward charged hadron A_N by PHENIX
 - ullet STAR measured little to no suppression of forward π^0
- sPHENIX could further reduce uncertainties with certain z_{vtx} selections enabled by streaming recorded data

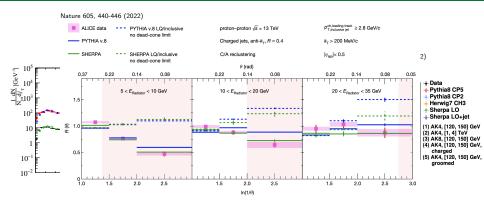
Sivers effects via γ -jet and dijet


ullet STAR and PHENIX use $\gamma/{
m di-hadron}$ and dijet for various observables sensitive to TMDs

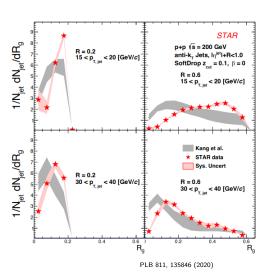
Sivers effects via γ -jet and dijet



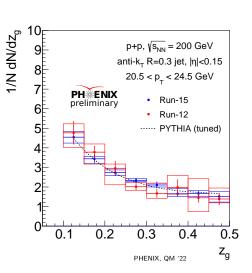
- ullet STAR and PHENIX use $\gamma/{
 m di-hadron}$ and dijet for various observables sensitive to TMDs
- sPHENIX, as a dedicated jet detector, will be able to make additional precise measurements of e.g. spin sorted p_{out}


nPDF Constraints with γ -jet and dijet

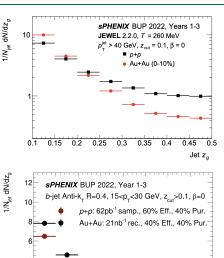
- ullet Combined γ -jet and dijet measurements can be used to reduce impact of normalization uncertainties
- nPDF improvements at low Q^2

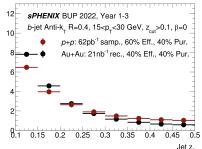


 LHC experiments exploring hadronization and fragmentation with stronger parton→hadron relationships

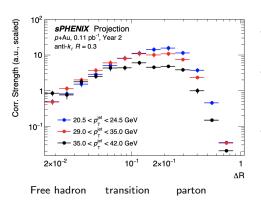


 LHC experiments exploring hadronization and fragmentation with stronger parton→hadron relationships


Modern substructure techniques coming to RHIC

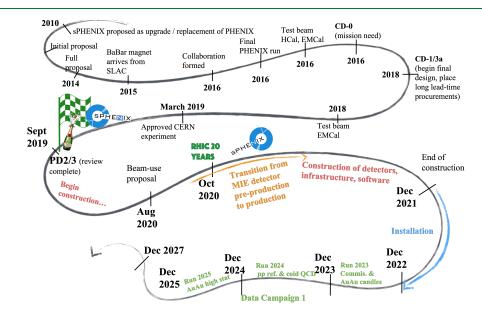


Modern substructure techniques coming to RHIC



- Modern substructure techniques coming to RHIC
- Future measurements at sPHENIX will open up new research directions at RHIC, e.g. with comparisons of fragmentation patterns in light vs. heavy flavor jets

Ice Osborn


- New observables explored, e.g. energy-energy correlators
- EECs sensitive to wide range of fragmentation+hadronization process
- sPHENIX will have large jet and high p_T track statistics to study both p+p and (if any) cold nuclear modification

Conclusions

- sPHENIX is a detector designed for precision jet, high p_T charged hadron, and heavy flavor measurements
- Rich data set of transversely polarized p + p and p+A collisions in Run 24
- High statistics observables enabled by high rates and unique streaming capabilities
- Opens up new opportunities at RHIC to further spin and cold QCD measurements sensitive to
 - Trigluon correlator
 - · Sivers and Sivers-like effects
 - Hadronization and fragmentation
 - Many others, e.g. Collins and IFFs, Transversity→ tensor charge, and more...

Extras

sPHENIX timeline

