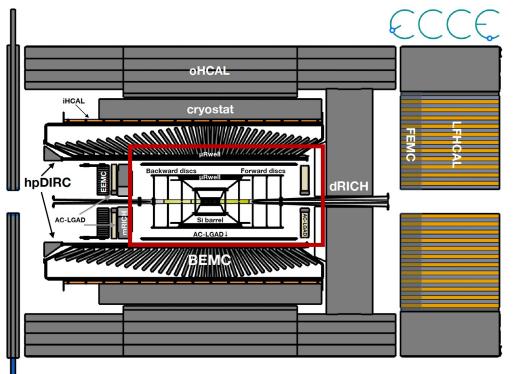


EIC Detector 1 Tracking Subsystem Developments and Plan

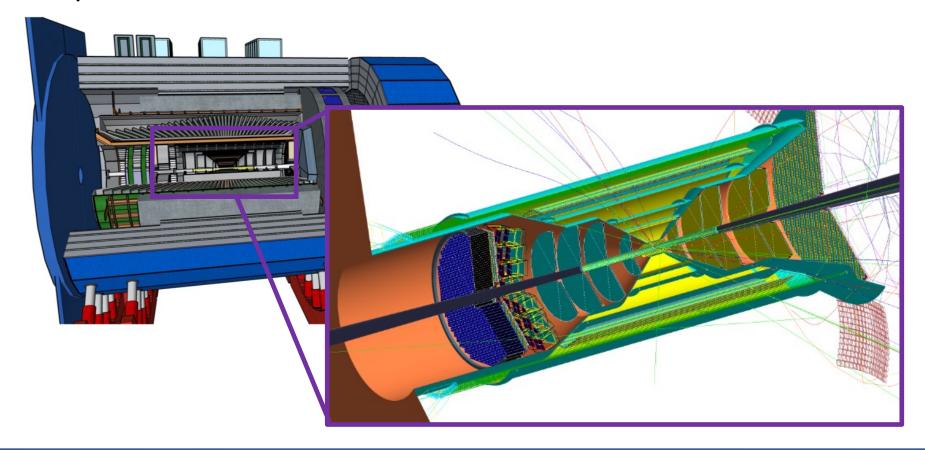
Xuan Li (Los Alamos National Laboratory)
on behalf of the EIC Detector 1 Tracking Working Group



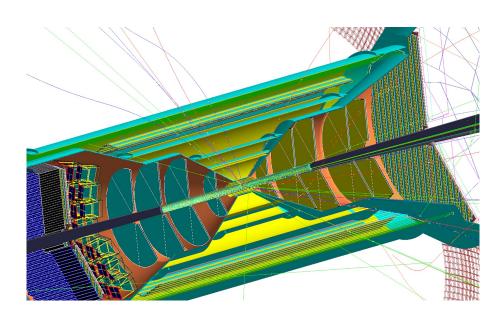
Outline

- Introduction to the EIC reference detector: ECCE tracking detector.
 - Design
 - Performance
- EIC Detector 1 tracking detector development and plan
 - Detector geometry optimization.
 - Performance validation
 - Technology options, mechanical and readout developments
- Summary and Outlook

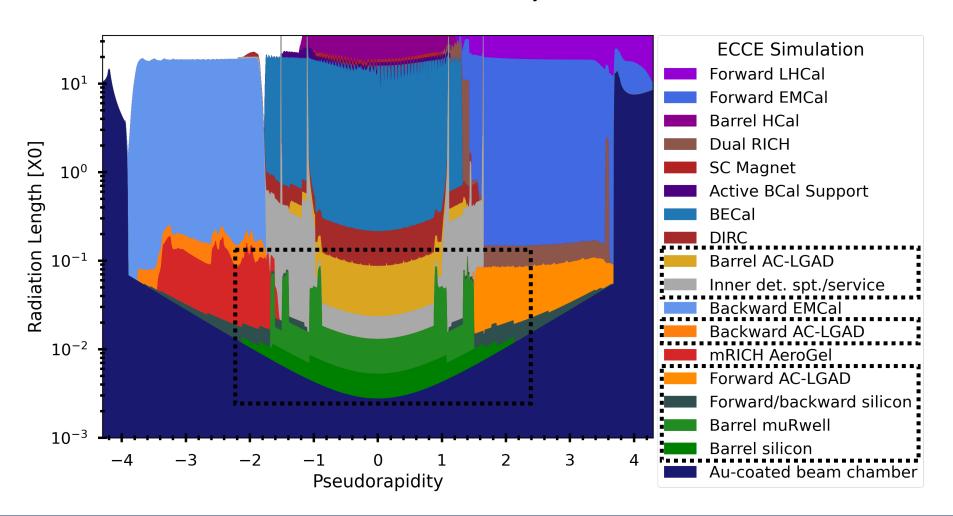
EIC reference detector selection


- The ATHENA, ECCE and CORE consortia (proto-collaborations) submitted detector proposals for the EIC reference detector design selection.
- The ECCE detector, which will reuse the 1.4T Babar magnet, has been selected as the EIC reference detector design.

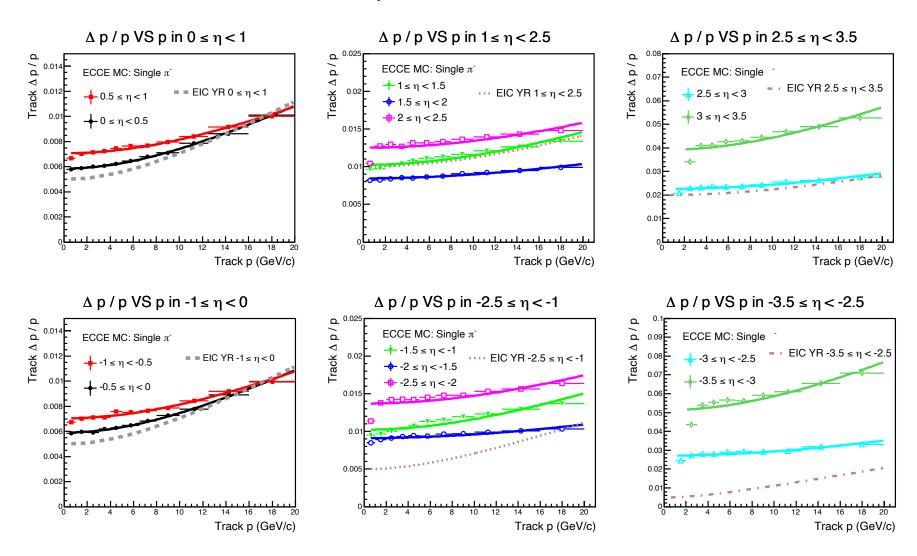
 The EIC detector 1 protocollaboration has been formed to proceed with the technical design for the EIC project detector at IP6 with optimizations based on the ATHENA and ECCE detector designs.


Detector 1 reference design: tracking detector (I)

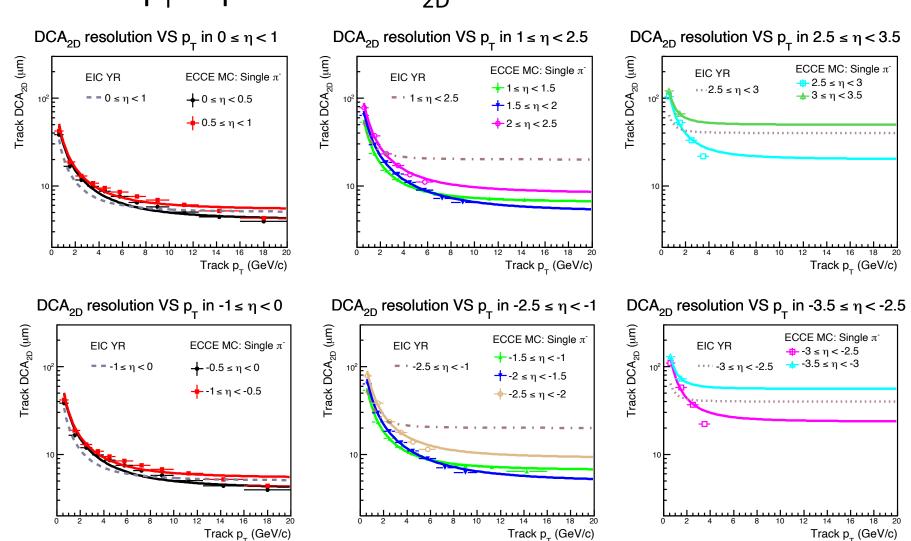
• The EIC reference tracking detector consists of integrated MAPS, MPGD (or $\mu Rwell$) and AC-LGAD tracking detectors. Detailed detector segmentation and service parts have been implemented in the Fun4All framework.


Detector 1 reference design: tracking detector (II)

- The EIC reference tracking detector consists of integrated MAPS, MPGD (or $\mu Rwell$) and AC-LGAD tracking subsystems. Detailed detector segmentation and service parts have been implemented in the Fun4All framework.
- The tracking detector layout:
 - Barrel: 5 MAPS layers, 3 μRwell layers and 1 AC-LGAD layer. Inner Radius: 3.3 cm, Outer Radius: 77.0 cm.
 - Hadron endcap: 5 MAPS planes and 1 AC-LGAD plane.
 Minimum z: 25 cm, Maximum z: 182 cm.
 - Electron endcap: 4 MAPS planes and 1 AC-LGAD plane.
 Minimum z: -155.5 cm, Maximum z: -25 cm.


Material budget scan

 From the Fun4All simulation, material budget scan of the EIC reference detector subsystems.


EIC reference detector tracking momentum resolution

• Track momentum dependent momentum resolution.

EIC reference detector tracking DCA_{2D} resolution

Track p_T dependent DCA_{2D} resolution.

EIC Detector 1 Tracking Detector developments

- About the EIC detector 1 tracking working group:
 - Conveners: Xuan Li (xuanli@lanl.gov), Kondo Gnanvo (kagnanvo@jlab.org), Laura Gonella (laura.gonella@cern.ch), Francesco Bossu (francesco.bossu@cea.fr)
 - Email mailing list: eic-projdet-tracking-l@lists.bnl.gov
 - We have bi-weekly meetings scheduled at 11:00AM US eastern time every other Thursday and the meeting indico link: https://indico.bnl.gov/category/404/
 - Mattermost channel: https://eic.cloud.mattermost.com/main/channels/tracking
 - WIKI page: https://wiki.bnl.gov/eic-project-

 detector/index.php/Tracking#EIC Project Tracking Working
 Group
- Welcome new collaborators to join us!

EIC Detector 1 Tracking work plan and goal

• Simulations:

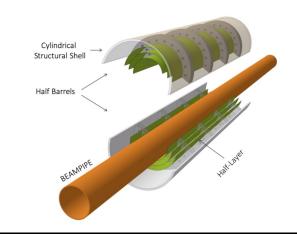
 Simulation task break down and priority list in <u>https://docs.google.com/spreadsheets/d/1Jp1-</u> <u>V7MavZFejn2SG185YarbMlpGCByGfF7yz4Y-Azc/edit?usp=sharing</u>

Technology review:

- Complete review of the choice of tracking technologies.
- Identify risks & fallback solutions for each technology.
- Establish the timelines to CD2/3A.
- Close coordination with the detector consortia (EIC-SC, eRD108).
- EIC Tracking Detector configuration:
 - By July EICUG, the baseline configuration "aka advanced conceptual design" of the tracking detector is established
- Requirements inputs from the physics WGs:
 - List of key tracking requirements such as momentum resolution, vertex and projection spatial resolutions.

Geometry optimization and simulation studies for the silicon tracker

Vertex layers


 The radii need to be adjusted as 5 mm clearance from the beam pipe are needed because of beam pipe backout.

Tracking layers

- The material assumed in the ECCE proposal is 0.05%X/X0 per barrel layer. This need to be updated to 0.55% X/X0 that is what is suggested by the EIC SC.
- Also, check the impact on performance by switching the sagitta middle layers with the ATHENA design (i.e., smaller radii).

Disks

- The last disk on both side in the ECCE design is currently floating and not supported. Service cone needs updating to make the required support connections.
- Hits per track as function of rapidity and p_T/momentum
 - The average number of hits per track in the electron going direction is more than 4 hits on average.
 - Needs further verification in simulations.
- EIC Background impacts on the tracking performance.

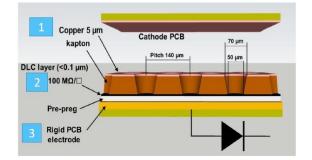
See Nicole Apadula's talk about eRD104 &111 activities.
See Zhenyu Ye's talk about eRD112 activities.

Geometry optimization and simulation studies for the MPGD tracker

Detectors

- Redundancy vs number of hits per track
- Forward: impact of a MPGD layer behind the dRICH to be studied
- Barrel: Technology selection (MM, μRWELL or both)

Detector thicknesses


- Redefine the requirements in material thickness for each MPGD layer in the barrel region based on simulation studies and physic needs
- Do we need low mass 0.5%X/X0 MPGD behind DIRC or can we relax this requirement to the order of ~1 - 2 % X/X0 instead ?

FEE, concentrators, DC-DC...

- Reference design: 280k channels
- The large number of channels will translate in a large number of FEE cards.
- Space limitations to be considered

Services

- Review number of detector modules
- Service routing
- Support structures to be studied.

- a WELL patterned kapton foil acting as amplification stage (GEM-like)
- a resistive DLC layer (Diamond-Like-Carbon)
 for discharge suppression w/ surface
 resistivity ~ 50 ÷ 100 MΩ/□
- 3 a standard readout PCB

See Sourav Tarafdar's talk on eRD108 activities

12

EIC Detector 1 Tracking work status

- The simulation software selection: Fun4All or DD4HEP, 1st meeting about the software status has been held on Jun. 2. Decided the simulation tasks and the priority list.
- Upcoming meetings will focus on:
 - Background studies and impacts on the tracking performance.
 - Detector technology inputs from consortium (e.g., EIC Si consortium, MPGD consortium) and eRD (e.g., eRD108, eRD 111, eRD112).
 - Tracking performance evaluation with the geometry optimization.
 - Detector integration with other detector subsystems.
 - Physics studies feedback.

• ...

Summary and Outlook

- The EIC detector 1 tracking working group has been formed and focuses on the tracking detector geometry optimization, updates and implement more technical details towards the pre-CDR submission.
- The charge, plan and path forward has been defined for the EIC detector 1 tracking detector related studies.
- We welcome your suggestions, inputs and feedback about the EIC detector 1 tracking developments.

Backup

EIC reference silicon vertex/tracking detector geometry

 The ECCE tracking detector geometries have been archived in the Fun4All ECCE associated repositories.

Barrel index	R (cm)	z _{min} (cm)	z _{max} (cm)
1	3.3	-13.5	13.5
2	4.35	-13.5	13.5
3	5.4	-13.5	13.5
4	21.0	-27	27
5	22.68	-30	30

H-endcap index	z (cm)	r _{in} (cm)	r _{out} (cm)
1	25	3.5	18.5
2	49	3.5	36.5
3	73	4.5	40.5
4	106	5.5	41.5
5	125	7.5	43.5

e-endcap index	z (cm)	r _{in} (cm)	r _{out} (cm)
1	-25	3.5	18.5
2	-52	3.5	36.5
3	-79	4.5	40.5
4	-106	5.5	41.5