June 8, 2022 2022 RHIC/AGS Annual Users' Meeting

CalorimetrySession: EIC Detector

Detector 1 Calo WG conveners: Friederike Block, Carlos Muñoz Camacho, Oleg Tsai, Paul E Raimer

Maria ŻUREK, Argonne National Laboratory

EIC Physics Case

NAS Finding 1: An EIC can uniquely address three profound questions about nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

EIC Physics Case

Calorimetry Role

DIS event kinematics - scattered electron or final state particles (CC DIS, low y)

Neutral Current DIS

- Detection of scattered electron with high precision - event kinematics
- Excellent e/h separation needed

Charged Current DIS

- Event kinematics from the final state particles (Jacquet-Blondel method)
- Jet measurement capabilities

Semi-Inclusive DIS

- Precise detection of scattered electron in coincidence with at least 1 hadron
- Measurement of SIDIS
 π⁰, decay electrons (e.g. •
 HF)

- **Deep Exclusive Processes**
 - Detection of all particles in event
 - Detection of DVCS γ, exclusive π⁰, decay electrons (e.g. VM)
 - Separation of γ/π^0 for DVCS
- \rightarrow See talk by A. Jentsch about far-forward (exclusivity) and far-backward region (Low Q², luminosity)

EIC Community outlined physics, detector requirements, and evolving detector concepts in the EIC Yellow Report.

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER EIC Yellow Report

Main tasks of the ECAL

- Detect the scattered **e** and separate them from π .
- Improve the electron momentum resolution at backward rapidities.
- **Detect neutral particles (photons,** π^0 **)**, and measure the energy and the coordinates of the impact.
- Separate secondary electrons and positrons from charged hadrons.
- Provide spatial resolution of two photons sufficient to identify decays $\pi^0 \to \gamma \gamma$ at high energies.

Challenges: e/π PID, γ/π^0 discimination, high energy resolution at large $|\eta|$ and momentum, dynamic range of sensors, available space

EIC Community outlined physics, detector requirements, and evolving detector concepts in the EIC Yellow Report.

Main tasks of the ECAL

- Detect the scattered **e** and separate them from π .
- Improve the electron momentum resolution at backward rapidities.
- **Detect neutral particles (photons,** π^0 **)**, and measure the energy and the coordinates of the impact.
- Separate secondary electrons and positrons from charged hadrons.
- Provide spatial resolution of two photons sufficient to identify decays $\pi^0 \to \gamma \gamma$ at high energies.

	-4 < η < -2	-2 < η < -1	η < 1	1 < η < 4
E resolution	2% ∕√E ⊕ (1−3)%	7% ∕\E ⊕ (1−3)%	(10−2) % $\bigwedge E \oplus (1−3)\%$	(10-12) % ∕√E ⊕ (1−3)%
e/π separation	up to 10 ⁻⁴	up to 10 ⁻⁴	up to 10 ⁻⁴	3σ e/π
Min E [GeV]	0.1	0.1	0.1	0.1

EIC Yellow Report

e/π separation:

- Depends on momentum and η
- Tightest constrain from parity violating asymmetries 10⁻⁴
- ΔG requires ~ 10⁻³

Main tasks of HCAL

- Precise reconstruction of the jet energy
 - Detection and isolation of neutral hadrons, in combination with information from EMCals, tracking and PID detectors.
 - Neutral/charged cluster discrimination with help of tracking
 - Complementing tracking at high η
- Detection of all the **final state hadrons** (Jaquet-Blondel method)
 - Proton fragmentation products in the forward area (n and K_L only in HCal)

Challenges: available space, energy resolution at high n

η	EIC Speci	ifications	Conservative option		
	σ_E/E , %	E_{min} , MeV	σ_E/E , %	E_{min} , MeV	
-3.5 to -1.0	$45/\sqrt{E}+7$	500	$50/\sqrt{E} + 10$	500	
-1.0 to +1.0	$85/\sqrt{E} + 7$	500	$100/\sqrt{E} + 10$	500	
+1.0 to +3.5	$35/\sqrt{E}$	500	$50/\sqrt{E} + 10$	500	

EIC Yellow Report

Backward Calorimetry

Backward EMCAL

- Non-projective PbWO calorimeter (EEEMC-Consortium)
 - \sim 2 × 2 × 20 cm³ crystals
 - Length ~20X/X₀, transverse size ~Molière radius
 - Located inside the inner DIRC frame
 - Preferred readout: SiPMs of pixel size 10μm or 15μm
 - Cooling to keep temperature stable within ± 0.1 °C
- Ongoing efforts advancing the design to increase coverage in η (-3.7 < η < -1.5) with inlay around beampipe

Backward HCAL in consideration

Possible upgrade path

- → See C. Muñoz Camacho for EEEMCal, https://indico.bnl.gov/event/15493/
- → See B. Page, https://indico.bnl.gov/event/15686/

Backward EM Calorimetry

Compton calorimeter / NPS prototype beam test

- 12x12 PWO modules (SICCAS crystals)
- Tested in JLab Hall-D

- → C. Muñoz Camacho for EEEMCal, https://indico.bnl.gov/event/15493/
- ightarrow V. Berdnikov, https://indico.bnl.gov/event/15615/
- → Nucl. Inst. Meth. A 1013 (2021) 165683

Technology I

→ See T. Horn, https://indico.bnl.gov/event/15802/

8000 homogeneous blocks of SciGlass

- 45.5 cm length (18 X₀)
 + ~10 cm radial readout space, read by SiPMs
- Coverage: -1.7 < η < 1.3
- SciGlass
 - Ongoing R&D EEEMCAL consortium
 → See Talk by T. Horn
 - Alternative to high resolution (expensive) crystal EMCal
 - 3 x 3 20 cm (~ 7X₀) SciGlass prototype detector tested in beam

Technology I

→ See T. Horn, https://indico.bnl.gov/event/15802/

Technology II

Hybrid concept

- O Imaging calorimetry based on monolithic silicon sensors AstroPix (NASA's AMEGO-X mission) 500 μm x 500 μm pixels Nuclear Inst. and Methods in Physics Research. A 1019 (2021) 165795
- Scintillating fibers in Pb (Similar to GlueX
 Barrel ECal, 2-side readout w/ SiPMs) Nuclear
 Inst. and Methods in Physics Research, A 896 (2018) 24-42
- 6 layers of imaging Si sensors interleaved with 5 Pb/ScFi layers and followed by a large chunk of Pb/ScFi section (can be extended to inner HCAL)
- Total radiation thickness for EMCAL of ~20 X₀
- Detector coverage: $-1.7 < \eta < 1.3$ which overlaps with "electron-going" side endcap

Energy resolution - SciFi/Pb Layers: 5.3% / $\sqrt{E} \oplus 1.0\%$ Position resolution - Imaging Layers (+ 2-side SciFi readout): with 1st layer hit information ~ pixel size

Technology II

- Standalone Calorimeter

 (no material/no magnetic field)
 → for apple-to-apple comparison with technologies presented in YR
- 2 step method: E/p cut + NN based on 3D position and energy information from imaging layers

- Impact of material and 3T field
- The lowest p point at 0.7 GeV/c significantly affected by the high magnetic field
 - The rejection factor will go up with lower field

Technology II

- Standalone Calorimeter

 (no material/no magnetic field)
 → for apple-to-apple comparison with technologies presented in YR
- 2 step method: E/p cut + NN based on 3D position and energy information from imaging layers

- Impact of material and 3T field
- The lowest p point at 0.7 GeV/c significantly affected by the high magnetic field
 - The rejection factor will go up with lower field

Shower profile from ATHENA simulation w/ 3T field. First check at r = 80 cm.

Barrel Hadronic Calorimetry

→ See: J. Lajoie, https://indico.bnl.gov/event/15493/

Reuse of sPHENIX outer (outside of the Solenoid) $HCal \approx 3.5\lambda$,

- Steel and scintillating tiles with wavelength shifting fiber
- $\Delta \eta \times \Delta \phi \approx 0.1 \times 0.1$ (1,536 readout channels, SiPMs)

 Necessity and feasibility of inner HCal under development, depends on EMCAL choice

Forward EM Calorimetry

4 SiPMs / tower

R&D: Improvement of light collection eff. and uniformity

Simulations:

- Expected E resolution ~ 11%/√E ⊕ 2%
- Can effectively separate γ/π^0 (z = 3.5 m) with ML methods

- Two mature sampling EMCal designs considered:
 - Pb-Scintillator Shashlik: scintillating tiles; light transported through the WLS fibers
 - Single towers smaller than R_M (~5.2 cm), use shower maxima to separate close particles
 - \circ X/X₀ = 18.5 (37.5 cm + 5 cm readout)
 - W/SciFi: scintillating fibers embedded in W/epoxy mix
 - Similar to sPHENIX W/SciFi
 - X /X₀ = 23 (17 cm + 10 cm readout), 2.5 x 2.5 cm towers (R_M=~2.3 cm)
 - Easier construction for WSciFi calorimeter
 - Compactness and higher EM-shower containment

- → See F. Bock, N. Schmidt, https://indico.bnl.gov/event/15686/
- → See O. Tsai, https://indico.bnl.gov/event/15686/

Forward Hadronic Calorimetry

- → See F. Bock, https://indico.bnl.gov/event/15810/
- → See O. Tsai, https://indico.bnl.gov/event/15810/

Two designs based on longitudinally separated steel and scintillator tiles

- Inspired by STAR Forward Calorimeter
 - Fe/Scint (20 mm / 3 mm) sandwich
 - 4 longitudinal segments (scintillation tiles with two different time constants)
 - $\lambda/\lambda_0 = 7 \text{ (ECAL + HCAL)}$
- Inspired by Projectile Spectator Detector (CBM)
 - 60 layers of steel-sci plates + 10 layers of W-Sci plates (5 x 5 cm towers)
 - 7 signals per tower (from 10 plates)
- Ongoing efforts to explore granular inlay around beampipe

Forward Hadronic Calorimetry

- → See F. Bock, https://indico.bnl.gov/event/15810/
- → See O. Tsai, https://indico.bnl.gov/event/15810/

Performance on energy resolution and matching

- Cluster finding and track matching efficiencies good in center of LFHCAL, losses towards edges (further ML optimization in progress)
- Small η dependence for energy resolution (fulfills YR requirements)

In general, our MC requires validation

- Validation for high Z absorbers
 - J. Adam, A. Jentsch (BNL), studies with Pb/Sc hcal eRD1/STAR
- Work in progress to tune MC for Fe absorber

Fe/Sc, CALICE Model R.Milton (UCLA)

Summary and Outlook

- Electron-Ion Collider physics case requires a detector with unique capabilities
 - Detector requirements summarized in the EIC Yellow Report (YR)
- This talk summarizes the needs and proposed technology choices to fulfill the YR requirements for the EIC Electromagnetic and Hadronic Calorimetry in the Central Detector
 - See the talk about the Far-Forward and Far-Backward regions by A. Jentsch
- Active R&D efforts for different technologies
 - See the talks in the next 2 sessions
- Final Detector I technology choices for calorimetry under evaluation
 - Ongoing performance, risk, and cost studies and integration evaluations

