eRD104 & eRD111 - Silicon tracker and services reduction

Nikki Apadula
Lawrence Berkeley National Laboratory
RHIC/AGS User’s Meeting
June 8, 2022
EIC Detector: Tracking Requirements

• Wide kinematic coverage
• Good momentum resolution
• High-precision primary vertex determination
• Secondary vertex separation capability

• Needs detector with:
 • high granularity & low material budget

All-Silicon Tracking Detector example: arXiv:2102.08337
Towards an EIC Detector Concept

Based on ALICE ITS3 sensor technology (65 nm)

- 3 innermost layers (vertexing)
- 2-3 intermediate layers (sagitta)
- 4-6 silicon discs (forward & backward)

ALICE ITS3 ~0.12 m², EIC silicon ~10 m²

- Wafer-scale not suitable for staves & discs
- Forked sensor design → optimize for large area coverage & yield
Current EIC Tracking R&D

- **eRD104: Services reduction**
 - Powering & readout

- **eRD111: Forming modules from stitched sensors**
 - Optimizing the module size & design to meet mechanical requirements and take advantage of the new sensor design

- **eRD111: Staves & Discs**
 - Conceptual designs

- **eRD111: Mechanics, integration, & cooling**
 - Support structures, study of air cooling
R&D: Material Budget

• Mass minimization is key, especially in electron-going (backward) direction
 • Base design:
 • 0.24% X/X_0 per layer for discs
 • 0.55% X/X_0 for staves

• eRD104
 • Power & data services reduction

• eRD111
 • Staves & Discs layout options, air cooling
eRD104 Overall Plan

• Powering (Birmingham, RAL)
 • Reduce the number of wires needed to power the detector
 • Investigation of DC-DC converters
 • Low risk, reduced material budget if kept to sides
 • Investigation of serial powering
 • Higher risk, lower material budget
 • Assess detector design goals & apply best optimization

• Data (ORNL, BNL)
 • Optimize system to minimize the service loads from signal transmission
 • Investigation into data aggregation
eRD111 Overall Plan

• Forming modules from stitched sensors (INFN Trieste, INFN Bari, Daresbury, Lancaster, Liverpool, Birmingham)
 • Options & optimizations

• Stave & disc construction (LBNL, LANL)
 • Conceptual design options
 • Cooling studies

• Additional infrastructure including mechanics & cooling (LBNL, LANL, JLAB)
 • Up-to-date CAD models
 • Conceptual designs
eRD111: Forming modules

- **Vertexing:**
 - Adapt ITS3 to EIC radii and optimize bending & interconnections
 - Study configuration of sensors into staves & discs based on reticle sizes

Wire bonding on curved sensors
eRD111: Forming modules

- Staves & Discs:
 - Module from sensors & FPC
 - Development of tooling to assemble & test sensors/modules

Traditional module: support+FPC+sensor

Novel module idea: sensor embedded in Kapton foil
eRD111: Staves & Discs

• Disc concept → Flexible & challenging
 • Plates, staves, etc.
 • Different disc diameters
 • Different inner hole openings

• Stave concepts
 • Truss, I-beam

• Iteration with module group
 • Module sizes/options
 • Buildability & tooling

Air cooling options will be studied for both
eRD111: Mechanics/Integration

- Detector mechanical structure & assembly/insertion mechanisms
 - Iterate with overall project needs/constraints
 - CAD models

Support structure examples from ALICE ITS2
Summary

• Strict tracking requirements necessary for physics goals at the EIC
 • High granularity & low material budget
• eRD104
 • Power & data services reduction
• eRD111
 • Forming modules
 • Stave & disc design
 • Mechanics/integration/cooling
• Collaboration with EICSC, Detector 1 Tracking & Integration Working Groups, & the EIC Project
 • Key to success!