

eRD104 & eRD111 - Silicon tracker and services reduction

Nikki Apadula
Lawrence Berkeley National Laboratory
RHIC/AGS User's Meeting
June 8, 2022

EIC Detector: Tracking Requirements

- Wide kinematic coverage
- Good momentum resolution
- High-precision primary vertex determination
- Secondary vertex separation capability

All-Silicon Tracking Detector example: arXiv:2102.08337

- Needs detector with:
 - high granularity & low material budget

Towards an EIC Detector 1 Concept

Based on ALICE ITS3 sensor technology (65 nm)

- 3 innermost layers (vertexing)
- 2-3 intermediate layers (sagitta)
- 4-6 silicon discs (forward & backward)

ALICE ITS3 ~0.12 m², EIC silicon ~10 m²

- Wafer-scale not suitable for staves & discs
- Forked sensor design → optimize for large area coverage & yield

Current EIC Tracking R&D

- eRD104: Services reduction
 - Powering & readout
- eRD111: Forming modules from stitched sensors
 - Optimizing the module size & design to meet mechanical requirements and take advantage of the new sensor design
- eRD111: Staves & Discs
 - Conceptual designs
- eRD111: Mechanics, integration, & cooling
 - Support structures, study of air cooling

R&D: Material Budget

Mass minimization is key, especially in electron-going (backward)

direction

- Base design:
 - $0.24\% \text{ X/X}_0$ per layer for discs
 - $0.55\% \text{ X/X}_0$ for staves
- eRD104
 - Power & data services reduction
- eRD111
 - Staves & Discs layout options, air cooling

eRD104 Overall Plan

- Powering (Birmingham, RAL)
 - Reduce the number of wires needed to power the detector
 - Investigation of DC-DC converters
 - Low risk, reduced material budget if kept to sides
 - Investigation of serial powering
 - Higher risk, lower material budget
 - Assess detector design goals & apply best optimization
- Data (ORNL, BNL)
 - Optimize system to minimize the service loads from signal transmission
 - Investigation into data aggregation

eRD111 Overall Plan

- Forming modules from stitched sensors (INFN Trieste, INFN Bari, Daresbury, Lancaster, Liverpool, Birmingham)
 - Options & optimizations
- Stave & disc construction (LBNL, LANL)
 - Conceptual design options
 - Cooling studies
- Additional infrastructure including mechanics & cooling (LBNL, LANL, JLAB)
 - Up-to-date CAD models
 - Conceptual designs

eRD111: Forming modules

• Vertexing:

- Adapt ITS3 to EIC radii and optimize bending & interconnections
- Study configuration of sensors into staves & discs based on reticle sizes

Wire bonding on curved sensors

eRD111: Forming modules

https://indico.cern.ch/event/276611/contributions/62286 3/attachments/502969/694527/dulinski FEE-2014.pdf

Wojciech.Dulinski@iphc.cnrs.fr

- Staves & Discs:
 - Module from sensors & FPC
 - Development of tooling to assemble & test sensors/modules

FEE-2014, Argonne, USA

Novel approach for ultra thin sensor packaging: use of a "standard" flex PCB process for chip embedding in plastic foils The goal: < 0.1 % of X_0 per sensor layer (large area ladder, all included)

Embedding principle

Gluing of another kapton foil for deposition of second metal layer

No wire bonding, excellent mechanical chip protection

Traditional module: support+FPC+sensor

Novel module idea: sensor embedded in Kapton foil

ÍPHC

eRD111: Staves & Discs

- Disc concept → Flexible & challenging
 - Plates, staves, etc.
 - Different disc diameters
 - Different inner hole openings
- Stave concepts
 - Truss, I-beam
- Iteration with module group
 - Module sizes/options
 - Buildability & tooling

Air cooling options will be studied for both

eRD111: Mechanics/Integration

- Detector mechanical structure & assembly/insertion mechanisms
 - Iterate with overall project needs/constraints
 - CAD models

Summary

- Strict tracking requirements necessary for physics goals at the EIC
 - High granularity & low material budget
- eRD104
 - Power & data services reduction
- eRD111
 - Forming modules
 - Stave & disc design
 - Mechanics/integration/cooling
- Collaboration with EICSC, Detector 1 Tracking & Integration Working Groups, & the EIC Project
 - Key to success!