# Cylindrical and flat MPGD trackers

#### **Souray Tarafdar**

Vanderbilt University

On behalf of

**eRD108** 

(Alexander Kiselev, Bob Azmoun, Francesco Bossu, Kondo Gnanvo, Marcus Hohlmann, Martin Purschke, Matthew Posik, Mike Luntz, Nikolai Smirnov, Pietro Iapozzuto)

2022 RHIC/AGS Annual Users Meeting June 8th, 2022

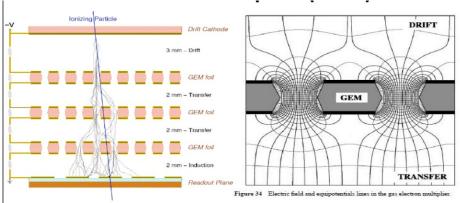
















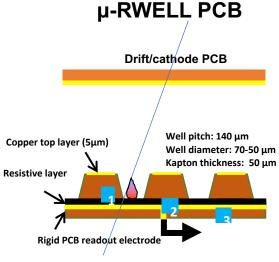

## Micro Pattern Gaseous Detector (MPGD) overview

#### **Gas Electron Multiplier (GEM)**



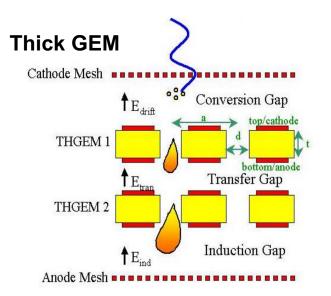
Micromegas

Ar:CO2


resistive strps

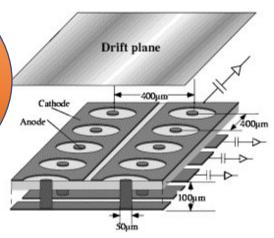
pillar

OV


0.128 mm
550 V

readout strips




G. Bencivenni et al., 2015\_JINST\_10\_P02008

F.Sauli, Nucl. Intr. And Meth. A386(1997)531



- Many more variant of MPGDs are available.
- All of them are based on same basic principle of amplification of ionized electrons in gaseous medium under the passage of charge particle.

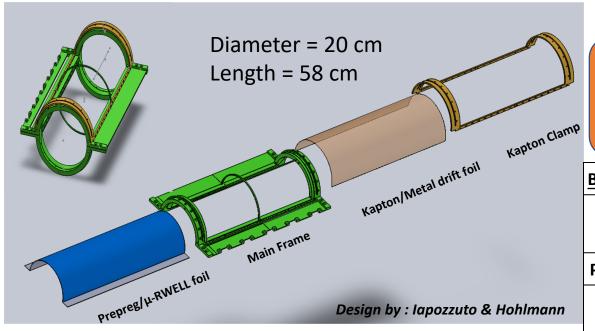




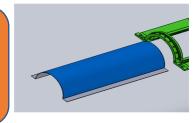
## eRD108 program for EIC

#### Goals of eRD108 for EIC detector-1:

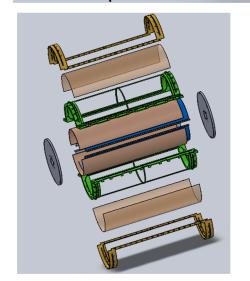
#### 1. MPGD tracking layer inside 1.4 T magnet:

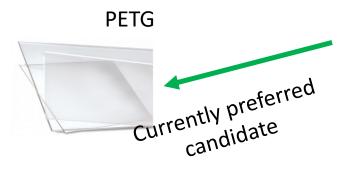

- Development of low mass large size detector in barrel region (R < 70 cm) which is critical for meeting Physics requirement.
- Development of tracking layer (either cylindrical tiles or planar tiles) outside DIRC (R > 70 cm) to provide directional information to help reconstruct Cherenkov ring reconstruction. Low material budget less critical. Can be either  $\mu$ -RWELL or Micromegas.
- Challenging R&D for satisfying both low mass and also cylindrical geometry.

#### 2. MPGD tracking layer behind dRICH (low priority):


- Planar MPGD layer to provide additional space point for reconstructing Cherenkov rings in dRICH.
- Low material budget is less critical and easier to construct.
- 3. Both the above R&D has the common goal of developing/optimizing various 2D readout patterns for MPGD which can provide requisite spatial resolution to satisfy EIC Physics requirement.
- 4. Not only hardware but also simulation studies on detector performance (both standalone and after complete integration in EIC detector-1).

# Mechanical structure of cylindrical µ-RWELL




# $\label{eq:material} \mbox{Material considerations for $\mu$-RWELL} \\ \mbox{foil support base}$

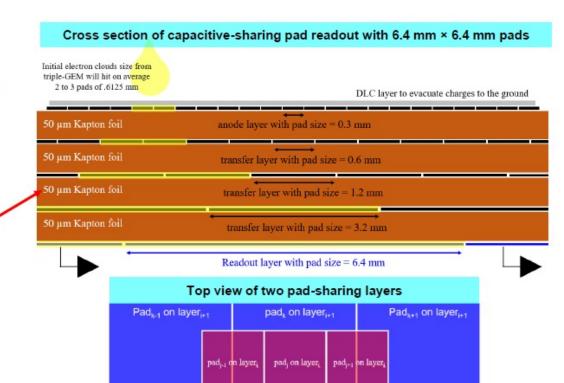


| Base Material             | Thickness (mm) | Radiation Length (cm) | % of Radiation Length |
|---------------------------|----------------|-----------------------|-----------------------|
| Epoxy Resin               | 0.3            | 41.6                  | 0.07                  |
|                           |                |                       |                       |
| <b>Prepreg Fiberglass</b> | 0.2            | 25.0                  | 0.08                  |
| Carbon Fiber              | 0.1            | 42.7                  | 0.02                  |
| PETG Thermo               | 0.5            | 28.5                  | 0.17                  |
| PETG Thermo               | 1.0            | 28.5                  | 0.35                  |
| Styrofoam                 | 5.0            | 1,375.0               | 0.04                  |
| Styrofoam                 | 2.6            | 1,375.0               | 0.02                  |
| Styrofoam                 | 1.3            | 1,375.0               | 0.01                  |

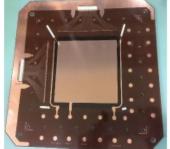




# Capacitive-sharing (CapaSh) with various readout structure Jefferson Lab



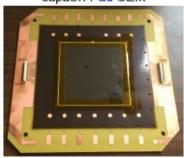

#### Principe of capacitive-sharing readout structures:


- Vertical stack of pads layers ⇒ Transfer of charge from MPGD via capacitive coupling
- A given arrangement of the pads position from one layer to the layer underneath as well as the doubling in size of the pad pitch allows:
  - Transverse sharing of the charges between neighboring pads of the layer (i+1) from vertical charged transfer from layer (i) through capacitive coupling
  - Principle of transverse charge-sharing through capacitive coupling i.e., capacitivesharing is illustrated on the cross-section sketch on the left
- The scheme preserves of the position information i.e. spatial resolution with large readout strips or pads -> Goal 50 µm for 1-mm strip r/o and 150 µm for 1 cm<sup>2</sup> pad r/o
- Basic proof of concept established with 800 µm X-Y strip and 1 cm<sup>2</sup> pad readout

#### Motivation & some key facts of capacitive-sharing readout:

- Develop high performance & low channel count readout structures for MPGDs:
  - Reduce the number of readout electronic channels for large area MPGDs
  - Low-cost technology for large area → standard PCB fabrication techniques
  - Application for future colliders and NP experiments
- Capacitive-sharing concept is simple, versatile and flexible:
  - Compatible with all MPGD technologies → GEM, uRWELL, Micromegas, THGEM ...
  - Compatible with all type of readouts → pads, 2D-strips, zigzag, 3-axis X-Y-U etc ...





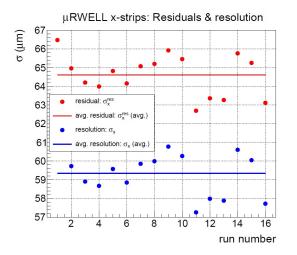


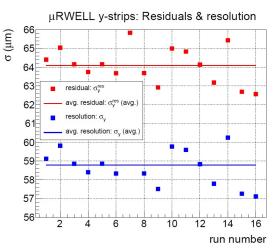

capaSh-XY-Strip GEM

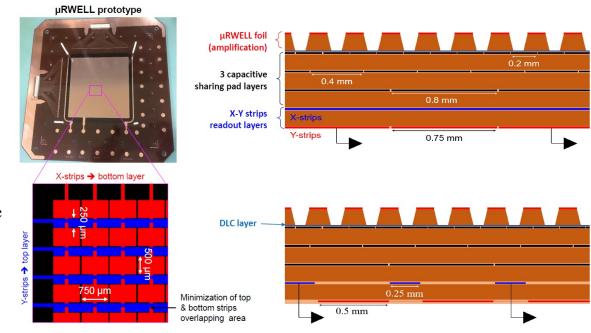


capaSh-Pad GEM

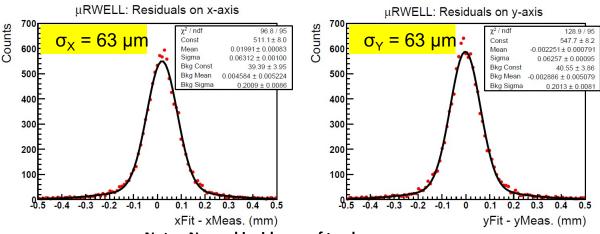



6/8/22 RHIC-AGS User's Mtg.


### µRWELL prototype with capaSh 2D strip readout anode




- ❖ 3-layer stack capacitive sharing strip readout → black pads on the cross-section view
- ❖ X-strips and X-strips on different layers separated by 50 μm. Kapton foil is not etched out between top and bottom strips → Signal on top and bottom strip collected through capacitive coupling: strip pitch = 800 μm
- $\bullet$  Beam test in Hall D @ JLab with 3 6 GeV electron beam at normal incidence.
- Spatial resolution performances
  - Red dots: widths  $\sigma_{X(Y)}$  of the Gaussian fit to tracking residuals in x and y before track fit correction. Average  $\sigma_{X(Y)}$  over 16 independent runs  $\sim$ 64  $\mu m$
  - Blue dots: spatial resolution after before track fit corrections . The average resolution in both x and y over 16 independent runs is  $\sim 59 \ \mu m$


#### Residual width (red dots) & spatial resolution (blue dots) in x and y

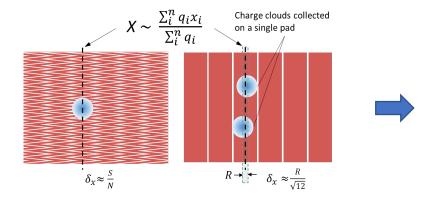




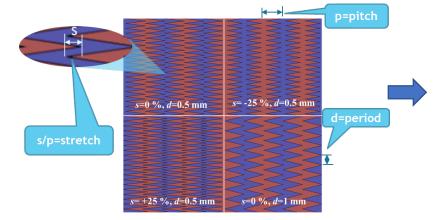


#### Tracking residual distribution plots in x and y before track fit correction

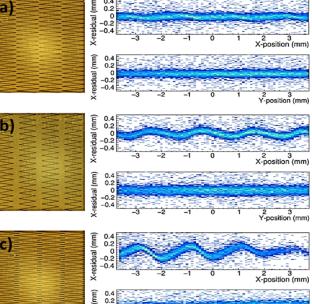



Note: Normal incidence of track

### 2D Interleaved Readouts for MPGDs



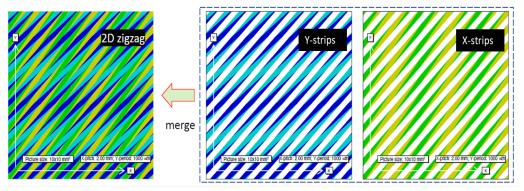

**Objective:** Once the geometric parameters of interleaved anodes (such as zigzags) are precisely tuned for a specific detector application, coarsely segmented (pitch > 1 mm) strip arrays maintain high position resolution, a uniform detector response, do not necessarily require correction functions, and minimize the readout channel count.

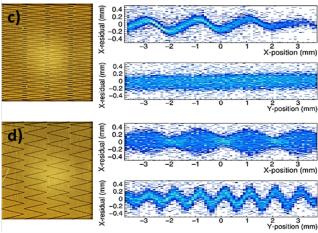

#### **Advantage of Interleaved anodes**



#### **Can Optimize 1D ZZ patterns**




#### **Tune Detector Response**




#### 2D interleaved anode structures can be constructed by a relatively simple

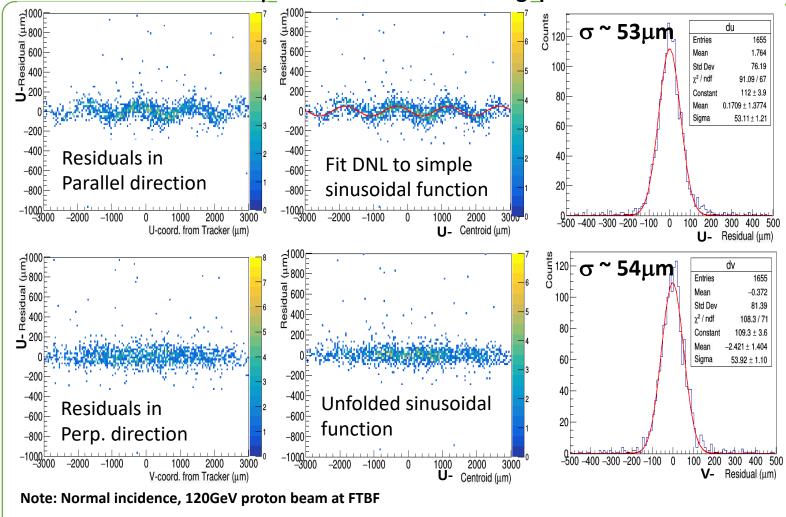
**Organize 2D Interleaved Anode Strips** 

- rearrangement of the 1D zigzag diamond-shaped elements
- The geometric parameters of the anode can be tuned to achieve the desired performance with linear charge sharing and a uniform response






### 2D Zigzag Performance for normal track incidence




#### **Example of 2D ZZ pattern**



- Organize arbitrary U-V Strips
- The readout is realized on a simple 2- layer flex Kapton PCB to accommodate non-planar configurations
- Achieve uniform response in direction orthogonal to strip coord. axis
- Slight (<50 $\mu$ m) DNL in parallel direction
- The DNL-corrected resolution along the U- and V-plane is <54 $\mu m$
- The correction is small (i.e., reduces the resolution by about  $5\mu m$ )
- The slight DNL may be removed via anode shape optimization

#### Results from $\mu$ -RWELL with 3mm drift gap



**Summary:** 2D interleaved anode patterns with relatively coarse pitch are capable of producing excellent position resolution and a relatively uniform detector response with relatively minimal instrumentation

## R&D on cylindrical Micromegas tracker

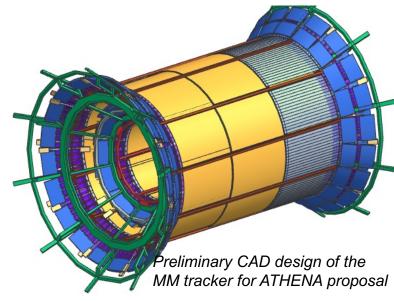


#### **Motivation**

Build a full (no acceptance gaps) light-weight modular Micromegas barrel tracker to complement the silicon vertex detector

#### **CLAS12 MM Technology**

- Compact cylindrical tracker in a B=5T solenoid, total active area ~4m<sup>2</sup>
- Light cylindrical tiles (~0.4% X0 per layer)
- 1D readout per tile (either phi or z coord)
- Taking data since 2017


#### **Upgrades to fit the EIC needs:**

- Simpler construction:
  - about one module size bent at different radii,
  - overlap tiles for no acceptance gaps
- 2D readout
  - Resolutions 50 100 μm, on both directions
  - Keeping the channel count as low as possible

#### **Objectives**

- FY22:
  - Optimization of the 2D readout for low number of channels on small prototypes
  - CAD design of the full-scale prototype
- FY23:
  - Build a full-scale prototype of a Micromegas tile (50x70cm<sup>2</sup>) with the chosen 2D readout





# R&D on cylindrical Micromegas tracker



#### **R&D 2D readout**

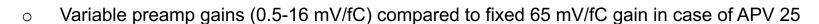
- Several small prototypes ~12x12 cm<sup>2</sup>
- Multi stack for easy combination of different options:
  - AK: Amplification Kapton
    - Vary the resistivity, the shape, ...
  - RK: Readout Kapton
    - Different strip pitch (1, 1.5, 2 mm)
    - Vary strip type (straight, zigzag, pixel,..)
    - 2D zigzag from BNL
- Assembly in house
  - Pressing
  - 3D printed mechanics

#### **Testing**

- 55Fe Cosmic rays test bench in Saclay
- X-rays gun tests in BNL
- Beam test in 2023



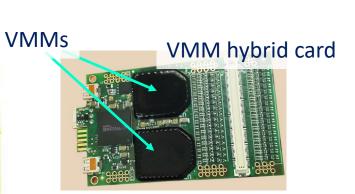


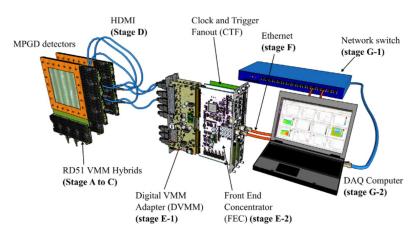

# Electronics and DAQ system



#### Small scale VMM-SRS electronics and DAQ system

- Goal: In collaboration with BNL, FIT, and JLab to commission a small-scale VMM-SRS system to equip and readout a portion of the μ-RWELL cylindrical prototype tracker with VMM3a ASICs [ref: D.Pfeiffer et. al., NIMA 1031 (2022) 166548].
  - APV25 has been an MPGD ASIC workhorse, but no longer produced
  - Assess the use of VMM3a as potential replacement ASIC for APV25
  - Attractive characteristics of VMM
    - Self trigger ability
    - Digital instead of analogue




Less intrinsic noise along with better timing resolution (< 1ns)</li>









6/8/22

# **Summary and Outlook**

- Substantial R&D is in progress related to design of mechanical structure of large size cylindrical  $\mu$ -RWELL.
- Promising R&D results from cylindrical large size Micromegas.
- Encouraging results from preliminary R&D with various types of MPGD readout board structure (2D zigzag and capacitive sharing).
- Upgrading of traditional APV25 based MPGD electronics to latest VMM based MPGD electronics is ongoing
- Ongoing studies to implement effect of track angle and Magnetic field on spatial resolution in EIC-detector1 simulation framework.
- Upcoming test beam during Fall 2022 at Jefferson Lab will provide more answers to the effect of track angle with respect to detector R/O surface on spatial resolution.
- Standalone simulation studies will provide answers to the effect of magnetic field on spatial resolution of cylindrical MPGD trackers.