sPHENIX Overview

Christopher McGinn
20 July 2022
Brookhaven National Lab
Werequire a detector that can study all this physics!

- Precise tracking and vertexing
- Hermetic calorimetry
- High-datarates and triggering

QGP E-Loss

Christopher McGinn
sPHENIX Physics Program

- u, d, s
- c
- b

QGP E-Loss Substructure

• We require a detector that can study all this physics!
• Precise tracking and vertexing
• Hermetic calorimetry
• High data rates and triggering
Were require a detector that can study all this physics!

- Precise tracking and vertexing
- Hermetic calorimetry
- High-data rates and triggering

QGP E-Loss
Substructure

Sequential Quarkonia Melting
sPHENIX Physics Program

QGP E-Loss
Substructure
Sequential Quarkonia Melting
Cold QCD

u,d,s
c
b

Werequireadetectorthatcanstudyallthisphysics!

Precisetrackingandvertexing

HermeticCalorimetry

High-dataratesandtriggering

Christopher McGinn
QGP E-Loss Substructure
• We require a detector that can study all this physics!
 • Precise tracking and vertexing
 • Hermetic Calorimetry
 • High-data rates and triggering
sPHENIX Detector Design

Tracking Detectors

SC magnet
flux return door
INTT
MVTX

cryogenic chimney

outer HCal
inner HCal
EMCal
TPC

support carriage

Not shown: MinimumBiasDetector (MBD) and sPHENIX Event Plane Detector (sEPD)
sPHENIX Detector Design

Tracking Detectors

Calorimetry

• Not shown: Minimum Bias Detector (MBD) and sPHENIX Event Plane Detector (sEPD)

Christopher McGinn
sPHENIX Detector Design

Tracking Detectors

Calorimetry

Magnet System

Christopher McGinn
sPHENIX Detector Design

- **Tracking Detectors**
- **Calorimetry**
- **Magnet System**

- Not shown: Minimum Bias Detector (MBD) and sPHENIX Event Plane Detector (sEPD)

Christopher McGinn
Tracking Subdetectors

Tracking Systems from interior-to-exterior:

1. MAPS Vertex Detector (MVTX)
 - High-precision vertexing

2. Intermediate Silicon Strip Tracker (INTT)
 - High-precision timing for beam crossing

3. Time Projection Chamber (TPC)
 - High-precision momentum measurement

4. Time Projection Outer Tracker (TPOT)
 - Correct for TPC space charge distortions
Tracking Subdetectors

Tracking Systems from interior-to-exterior:
1. MAPS Vertex Detector (MVTX)
 - High-precision vertexing
2. Intermediate Silicon Strip Tracker (INTT)
 - High-precision timing for beam crossing
Tracking Subdetectors

Tracking Systems from interior-to-exterior:

1. MAPS Vertex Detector (MVTX)
 • High-precision vertexing

2. Intermediate Silicon Strip Tracker (INTT)
 • High-precision timing for beam crossing

3. Time Projection Chamber (TPC)
 • High-precision momentum measurement
Tracking Subdetectors

Tracking Systems from interior-to-exterior:

1. MAPS Vertex Detector (MVTX)
 • High-precision vertexing

2. Intermediate Silicon Strip Tracker (INTT)
 • High-precision timing for beam crossing

3. Time Projection Chamber (TPC)
 • High-precision momentum measurement

4. Time Projection Outer Tracker (TPOT)
 • Correct for TPC space-charge distortions
- 3 Layers of Monolithic Active Pixels (MAPs)
 - Chosen for reduced material budget
- Distance of Closest Approach (DCA) resolved at $<10 \mu m$ for $p_T > 2$ GeV
- Essential to heavy flavor program
• 4 layer (2 hit) silicon strip detector
• Timing resolution ~ 100ns
 • Only tracking detector capable of resolving single RHIC bunch crossing
- Compact, spanning $20 < r < 78$ cm
 - Active region begins at $r > 30$ cm
- Gateless, employs GEMs to minimize ion backflow (IBF)
 - Continuous streaming readout
 - $< 0.5\%$ IBF in testing
- 8 Micromegas-based detectors
- Inserted between TPC and EMCal
- Correct for beam-induced space charge distortions of the TPC
 - Black-to-blue dots on right
- Also provides another hit for tracking
Calorimetry Subdetector System

Calo. Systems from interior-to-exterior:

1. Electromagnetic Calorimeter (EMCal)
 - Enables γ, jet, and $\gamma \rightarrow ee$

2. Inner Hadronic Calorimeter (IHCal)
 - Inducing hadronic shower pre-magnet for jet measurement

3. BaBar Superconducting Magnet
 - Not an active part of the system but defines inner/outer HCal

4. Outer Hadronic Calorimeter (OHCal)
 - Primary detector of hadronic shower for jets
Calorimetry Subdetector System

Calo. Systems from interior-to-exterior:

1. Electromagnetic Calorimeter (EMCal)
 - Enables γ, jet, and $\Upsilon \rightarrow ee$

2. Inner Hadronic Calorimeter (IHCal)
 - Inducing hadronic shower pre-magnet for jet measurement
Calorimetry Subdetector System

Calo. Systems from interior-to-exterior:

1. Electromagnetic Calorimeter (EMCal)
 - Enables γ, jet, and $\Upsilon \rightarrow ee$

2. Inner Hadronic Calorimeter (IHCal)
 - Inducing hadronic shower pre-magnet for jet measurement

3. BaBar Superconducting Magnet
 - Not an active part of the system but defines inner/outer HCal
Calorimetry Subdetector System

Calo. Systems from interior-to-exterior:

1. Electromagnetic Calorimeter (EMCal)
 • Enables γ, jet, and $\Upsilon \rightarrow ee$

2. Inner Hadronic Calorimeter (IHCal)
 • Inducing hadronic shower pre-magnet for jet measurement

3. BaBar Superconducting Magnet
 • Not an active part of the system but defines inner/outer HCal

4. Outer Hadronic Calorimeter (OHCal)
 • Primary detector of hadronic shower for jets
• **SPACAL** sampling calorimeter
 • Scintillating fibers embedded in tungsten bricks
• Each tungsten brick covers 0.025×0.025 of $\Delta \eta \times \Delta \phi$
 • Comparable to CMS ECal granularity
• Spans pseudorapidity of ± 1.1, $\sim 20 \times X_0$
• Relative energy resolution expected $\sim 16\%/\sqrt{E}$
Inner and Outer HCal

- **IHCal**: Al and scintillating plates w/ WLS fibers
- **OHCal**: Steel and scintillating plates w/ WLS fibers
 - Also acts as magnetic flux return
- Spans η of ± 1.0 in 0.1×0.1 $\Delta \eta \times \Delta \phi$
- High-p_T resolution converges on 13.5%
- Installation now complete!
sEPD and MBD

- **sPHENIX Event Plane Detector (sEPD)**
 - Enables event plane determination far from measured jet production
 - 2 wheels of scintillator w/ embedded WLS fibers; follows STAR design
- **Minimum Bias Detector:**
 - Beam-beam counter repurposed from PHENIX for Min. Bias triggering
 - Covering pseudorapidity 3.51-4.61
• **Hybrid system: Calorimeter triggered, tracking is streaming**

DAQ and Trigger

- **sEPD**
- **MBD**
- **Calorimeters**
- **TPC**
- **INT**
- **MVTX**
- **FEE**
- **ROC**
- **RU**
- **ADC**
- **DCM**
- **SEB**
- **DAM**
- **EBDC**
- **Ethernet Switch**
- **Buffer Box**
- **SDCC Tape**
Streaming DAQ Impact

<table>
<thead>
<tr>
<th>M.B. p+p</th>
<th>Data Mode</th>
<th>Year-2024, triggered DAQ per-1kHz M.B. trigger</th>
<th>Year-2024, w/ str. tracker</th>
<th>Year 2026 w/ str. tracker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stats</td>
<td></td>
<td>1 Billion M.B. evts 0.026 pb(^{-1}) recorded</td>
<td>250 Billion M.B. evts 6.2 pb(^{-1}) recorded</td>
<td>3.2 Trillion M.B. evts 80 pb(^{-1}) recorded</td>
</tr>
<tr>
<td>Physics Reach</td>
<td>B → D(^0) → πK (R_{AA}) ref.</td>
<td>620 evts</td>
<td>150k evts</td>
<td>2M evts</td>
</tr>
<tr>
<td></td>
<td>D(^0) → πK pair Diffusion of c+(\bar{c})</td>
<td>620 evts</td>
<td>150k evts</td>
<td>2M evts</td>
</tr>
<tr>
<td></td>
<td>Λ(_{c}) → πKp Charm hadronization</td>
<td>1.3k evts</td>
<td>310k evts</td>
<td>4M evts</td>
</tr>
<tr>
<td></td>
<td>Prompt D(^0) → πK Tri-Gluon Corr. via TSSA</td>
<td>0.2M evts</td>
<td>50M evts</td>
<td>0.6B evts</td>
</tr>
</tbody>
</table>

- **Trigger (MBD, jet, γ)** cannot get us to open HF
- **Streaming output, however, does in p+p in p+A**
Run Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Species</th>
<th>$\sqrt{s_{\text{NN}}}$ [GeV]</th>
<th>Cryo Weeks</th>
<th>Physics Weeks</th>
<th>Rec. Lum.</th>
<th>Samp. Lum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>9 (13)</td>
<td>3.7 (5.7) nb$^{-1}$</td>
<td>4.5 (6.9) nb$^{-1}$</td>
</tr>
<tr>
<td>2024</td>
<td>$p^\uparrow p^\uparrow$</td>
<td>200</td>
<td>24 (28)</td>
<td>12 (16)</td>
<td>0.3 (0.4) pb$^{-1}$ [5 kHz]</td>
<td>45 (62) pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5 (6.2) pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>p^\uparrow+Au</td>
<td>200</td>
<td>–</td>
<td>5</td>
<td>0.003 pb$^{-1}$ [5 kHz]</td>
<td>0.11 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01 pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>20.5 (24.5)</td>
<td>13 (15) nb$^{-1}$</td>
<td>21 (25) nb$^{-1}$</td>
</tr>
</tbody>
</table>
Run Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Species</th>
<th>$\sqrt{s_{NN}}$ [GeV]</th>
<th>Cryo Weeks</th>
<th>Physics Weeks</th>
<th>Rec. Lum.</th>
<th>Samp. Lum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>9 (13)</td>
<td>3.7 (5.7) nb$^{-1}$</td>
<td>4.5 (6.9) nb$^{-1}$</td>
</tr>
<tr>
<td>2024</td>
<td>$p^\uparrow p^\uparrow$</td>
<td>200</td>
<td>24 (28)</td>
<td>12 (16)</td>
<td>0.3 (0.4) pb$^{-1}$ [5 kHz]</td>
<td>45 (62) pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td></td>
<td></td>
<td></td>
<td>4.5 (6.2) pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>p^\uparrow+Au</td>
<td>200</td>
<td>–</td>
<td>5</td>
<td>0.003 pb$^{-1}$ [5 kHz]</td>
<td>0.11 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01 pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>20.5 (24.5)</td>
<td>13 (15) nb$^{-1}$</td>
<td>21 (25) nb$^{-1}$</td>
</tr>
</tbody>
</table>
Run Schedule

| Year | Species | \(\sqrt{s_{NN}}\) [GeV] | Cryo Weeks | Physics Weeks | Rec. Lum. \(|z| < 10\) cm | Samp. Lum. \(|z| < 10\) cm |
|------|---------|-----------------|----------|-------------|-----------------|-----------------|
| 2023 | Au+Au | 200 | 24 (28) | 9 (13) | 3.7 (5.7) nb\(^{-1}\) | 4.5 (6.9) nb\(^{-1}\) |
| 2024 | \(p^\uparrow p^\uparrow\) | 200 | 24 (28) | 12 (16) | 0.3 (0.4) pb\(^{-1}\) [5 kHz] | 45 (62) pb\(^{-1}\) |
| | ** Streaming →** | | | | 4.5 (6.2) pb\(^{-1}\) [10\%-str] | |
| 2024 | \(p^\uparrow +\text{Au}\) | 200 | – | 5 | 0.003 pb\(^{-1}\) [5 kHz] | 0.11 pb\(^{-1}\) |
| | ** Streaming →** | | | | 0.01 pb\(^{-1}\) [10\%-str] | |
| 2025 | Au+Au | 200 | 24 (28) | 20.5 (24.5) | 13 (15) nb\(^{-1}\) | 21 (25) nb\(^{-1}\) |
Run Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Species</th>
<th>$\sqrt{s_{NN}}$ [GeV]</th>
<th>Cryo Weeks</th>
<th>Physics Weeks</th>
<th>Rec. Lum.</th>
<th>Samp. Lum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>9 (13)</td>
<td>3.7 (5.7) nb$^{-1}$</td>
<td>4.5 (6.9) nb$^{-1}$</td>
</tr>
<tr>
<td>2024</td>
<td>p^+p^+</td>
<td>200</td>
<td>24 (28)</td>
<td>12 (16)</td>
<td>0.3 (0.4) pb$^{-1}$ [5 kHz]</td>
<td>45 (62) pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streaming</td>
<td></td>
<td></td>
<td>4.5 (6.2) pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>$p^+ +$Au</td>
<td>200</td>
<td>-</td>
<td>5</td>
<td>0.003 pb$^{-1}$ [5 kHz]</td>
<td>0.11 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streaming</td>
<td></td>
<td></td>
<td>0.01 pb$^{-1}$ [10%-str]</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Au+Au</td>
<td>200</td>
<td>24 (28)</td>
<td>20.5 (24.5)</td>
<td>13 (15) nb$^{-1}$</td>
<td>21 (25) nb$^{-1}$</td>
</tr>
</tbody>
</table>

Commissioning + Initial QGP Data

Reference Data

Cold QCD Data

Full QGP Data
Run Schedule

| Year | Species | \(\sqrt{s_{NN}}\) [GeV] | Cryo Weeks | Physics Weeks | Rec. Lum. \(|z| <10\) cm | Samp. Lum. \(|z| <10\) cm |
|------|---------|--------------------------|------------|---------------|---------------------------|---------------------------|
| 2023 | Au+Au | 200 | 24 (28) | 9 (13) | 3.7 (5.7) nb\(^{-1}\) | 4.5 (6.9) nb\(^{-1}\) |
| 2024 | \(p^+p^+\) | 200 | 24 (28) | 12 (16) | 0.3 (0.4) pb\(^{-1}\) [5 kHz] | 45 (62) pb\(^{-1}\) |
| | **Streaming** | | | | 4.5 (6.2) pb\(^{-1}\) [10\%-str] | |
| 2024 | \(p^+\)Au | 200 | – | 5 | 0.003 pb\(^{-1}\) [5 kHz] | 0.11 pb\(^{-1}\) |
| | **Streaming** | | | | 0.01 pb\(^{-1}\) [10\%-str] | |
| 2025 | Au+Au | 200 | 24 (28) | 20.5 (24.5) | 13 (15) nb\(^{-1}\) | 21 (25) nb\(^{-1}\) |

Commissioning + Initial QGP Data

Reference Data

Cold QCD Data

Full QGP Data

- **Data-taking fast approaching!**
- **What are some prospective physics plans?**

Christopher McGinn
Projected R_{AA}’s

- sPHENIX R_{AA} reach nicely complements existing LHC kinematics
- sPHENIX $x_{J\gamma}$ accesses partonic energy loss at different QGP T
- For more details, see Tim Rinn’s talk!

Projected $\gamma^* +$jets balance

- sPHENIX R_{AA} reach nicely complements existing LHC kinematics
- sPHENIX $x_{J\gamma}$ accesses partonic energy loss at different QGP T
- For more details, see Tim Rinn’s talk!
Heavy Flavor Physics Projections

b-jet Invariant Mass
- Jet program naturally lends itself to heavy-flavor jets
- Open HF also viable w/ sPHENIX for mass dependent studies
- For more details, see Cameron Dean’s talk!
Quarkonia Projections

\(\Upsilon \) Mass

- Measure \(\Upsilon \) 1S, 2S, and 3S sequential suppression
 - Expect monotonic increasing suppression w/ nS state
- Measure as a function of \(N_{\text{part}} \) and \(p_T \)
- For more details, see Marzia Rosati’s talk!
Cold QCD Projections

TSSA for photons in p+p

• TSSA: Transverse Single Spin Asymmetry
 • Accesses the spin structure of nucleons
• For more details, see Ralf Seidl’s talk!
• Also, see Ron Belmont’s talk for bulk physics!
• The sPHENIX detector at RHIC will feature:
 • High precision vertexing and tracking
 • Via the combined MVTX-INTT-TPC-TPOT system
 • Full calorimetry for measurement of jets, photons, and tagging $\gamma \rightarrow ee$
 • Covers 2π in azimuth, ± 1.1 in η
Conclusion

The sPHENIX detector at RHIC will feature:

- High precision vertexing and tracking
 - Via the combined MVTX-INTT-TPC-TPOT system
- Full calorimetry for measurement of jets, photons, and tagging $\Upsilon \rightarrow ee$
 - Covers 2π in azimuth, ± 1.1 in η

Physics program of:

- Partonic energy loss and substructure modification
- Sequential suppression of Quarkonia states
- Initial state physics in cold-QCD program
- Bulk physics, open heavy flavor, and more!

First collisions expected Spring 2023!

Christopher McGinn
Conclusion

The sPHENIX detector at RHIC will feature:

• High precision vertexing and tracking
 • Via the combined MVTX-INTT-TPC-TPOT system
• Full calorimetry for measurement of jets, photons, and tagging $\Upsilon \rightarrow e^+e^-$
 • Covers 2π in azimuth, ± 1.1 in η

Physics program of:

• Partonic energy loss and substructure modification
• Sequential suppression of Quarkonia states
• Initial state physics in cold-QCD program
• Bulk physics, open heavy flavor, and more!

First collisions expected Spring 2023!