# **sPHENIX** Overview

### Christopher McGinn 20 July 2022 Brookhaven National Lab

University Colorado Boulder











**Christopher McGinn** 



### **QGP E-Loss** Substructure





### QGP E-Loss Substructure







**QGP E-Loss** Substructure



### **QGP E-Loss** Substructure

University of Colorado Boulder

- We require a detector that can study all this physics!
  - Precise tracking and vertexing
  - Hermetic Calorimetry
  - High-data rates and triggering



### **Tracking Detectors**



#### **Christopher McGinn**



### **Tracking Detectors**

### Calorimetry





#### **Tracking Detectors**

### Calorimetry

### Magnet System



#### **Christopher McGinn**



#### **Tracking Detectors**

### Calorimetry

#### Magnet System

# Not shown: Minimum Bias Detector (MBD) and sPHENIX Event Plane Detector (sEPD) Christopher McGinn 3

Tracking Systems from interior-to-exterior:

- **1. MAPS Vertex Detector (MVTX)** 
  - High-precision vertexing





- Tracking Systems from interior-to-exterior:
  - 1. MAPS Vertex Detector (MVTX)
    - High-precision vertexing
  - 2. Intermediate Silicon Strip Tracker (INTT)
    - High-precision timing for beam crossing





- Tracking Systems from interior-to-exterior:
  - **1. MAPS Vertex Detector (MVTX)** 
    - High-precision vertexing
  - 2. Intermediate Silicon Strip Tracker (INTT)
    - High-precision timing for beam crossing
  - 3. Time Projection Chamber (TPC)
    - High-precision momentum measurement



3



- Tracking Systems from interior-to-exterior:
  - 1. MAPS Vertex Detector (MVTX)
    - High-precision vertexing
  - 2. Intermediate Silicon Strip Tracker (INTT)
    - High-precision timing for beam crossing
  - 3. Time Projection Chamber (TPC)
    - High-precision momentum measurement
  - 4. Time Projection Outer Tracker (TPOT)
     Correct for TPC space-charge distortions



### MVTX



- 3 Layers of Monolithic Active Pixels (MAPs)
  - Chosen for reduced material budget
- Distance of Closest Approach (DCA) resolved at < 10  $\mu {\rm m}$  for  $p_{\rm T}$  > 2 GeV

University of Colorado Boulder

• Essential to heavy flavor program





### Via sPHENIX BUP

- 4 layer (2 hit) silicon strip detector
- Timing resolution  $\sim$ 100ns

University of Colorado Boulder

 Only tracking detector capable of resolving single RHIC bunch crossing





Z





- Compact, spanning 20 < r < 78 cm
  - Active region begins at r > 30cm
- Gateless, employs GEMs to minimize ion backflow (IBF)
  - Continuous streaming readout
  - < 0.5% IBF in testing





INTT

MVTX

### ΤΡΟΤ





- 8 Micromegas-based detectors
- Inserted between TPC and EMCal
- Correct for beam-induced space charge distortions of the TPC
  - Black-to-blue dots on right
- Also provides another hit for tracking



Calo. Systems from interior-to-exterior:

1. Electromagnetic Calorimeter (EMCal)

• Enables  $\gamma$ , jet, and  $\Upsilon 
ightarrow$ ee





**Christopher McGinn** 

- Calo. Systems from interior-to-exterior:
  - 1. Electromagnetic Calorimeter (EMCal)
    - Enables  $\gamma$ , jet, and  $\Upsilon 
      ightarrow$ ee
  - 2. Inner Hadronic Calorimeter (IHCal)
    - Inducing hadronic shower pre-magnet for jet measurement





- Calo. Systems from interior-to-exterior:
  - 1. Electromagnetic Calorimeter (EMCal)
    - Enables  $\gamma$ , jet, and  $\Upsilon 
      ightarrow$ ee
  - 2. Inner Hadronic Calorimeter (IHCal)
    - Inducing hadronic shower pre-magnet for jet measurement
  - 3. BaBar Superconducting Magnet
    - Not an active part of the system but defines inner/outer HCal





- Calo. Systems from interior-to-exterior:
  - 1. Electromagnetic Calorimeter (EMCal)
    - Enables  $\gamma$ , jet, and  $\Upsilon 
      ightarrow$ ee
  - 2. Inner Hadronic Calorimeter (IHCal)
    - Inducing hadronic shower pre-magnet for jet measurement
  - 3. BaBar Superconducting Magnet

University of Colorado Boulder

- Not an active part of the system but defines inner/outer HCal
- 4. Outer Hadronic Calorimeter (OHCal)
  - Primary detector of hadronic shower for jets







• SPACAL sampling calorimeter

- Scintillating fibers embedded in tungsten bricks
- Each tungsten brick covers 0.025 x 0.025 of  $\Delta\eta$  x  $\Delta\phi$ 
  - Comparable to CMS ECal granularity
- Spans pseudorapidity of  $\pm$  1.1,  $\sim$  20 X $_0$
- Relative energy resolution expected  $\sim$ 16%/ $\sqrt{E}$



## **Inner and Outer HCal**



- IHCal: Al and scintillating plates w/WLS fibers
- OHCal: Steel and scintillating plates w/WLS fibers
  - Also acts as magnetic flux return
- Spans  $\eta$  of ±1.0 in 0.1 x 0.1  $\Delta\eta$  x  $\Delta\phi$
- High- $p_{T}$  resolution converges on 13.5%
- Installation now complete!

University of Colorado Boulder

MAGNET

EMCAL

2

### sEPD and MBD







### SPHENIX w/sepd/med

SEPD



- sPHENIX Event Plane Detector (sEPD)
  - Enables event plane determination far from measured jet production
  - 2 wheels of scintillator w/embedded WLS fibers; follows STAR design
- Minimum Bias Detector:

University of Colorado Boulder

- Beam-beam counter repurposed from PHENIX for Min. Bias triggering
- Covering pseudorapidity 3.51-4.61

**Christopher McGinn** 

# **DAQ and Trigger**



### • Hybrid system: Calorimeter triggered, tracking is streaming

**T** University of Colorado Boulder

SPHENIX

**Christopher McGinn** 

# **Streaming DAQ Impact**

|         |                                 | Year-2024,                          | Year-2024,                        | Year 2026                        |
|---------|---------------------------------|-------------------------------------|-----------------------------------|----------------------------------|
|         |                                 | triggered DAQ                       | w/ str. tracker                   | w/ str. tracker                  |
|         |                                 | per-1kHz M.B. trigger               |                                   |                                  |
| M.B.    | Data                            | Each 1k Hz M.B.                     | 10% M.B. events                   | 100% M.B. events                 |
| p+p     | Mode                            | trigger w/ $4\times 10^{-4}$        | str. recorded                     | str. recorded                    |
|         |                                 | of M.B. coll. triggered             |                                   |                                  |
|         | Stats                           | 1 Billion M.B. evts                 | 250 Billion M.B. evts             | 3.2 Trillion M.B. evts           |
|         |                                 | $0.026 \ \mathrm{pb}^{-1}$ recorded | $6.2 \ \mathrm{pb^{-1}}$ recorded | $80 \ \mathrm{pb}^{-1}$ recorded |
| Physics | $B\to D^0\to \pi K$             | 620 evts                            | 150k evts                         | 2M evts                          |
| Reach   | $\mathbf{R}_{AA}$ ref.          |                                     |                                   |                                  |
|         | ${ m D}^0 	o \pi { m K}$ pair   | 620 evts                            | 150k evts                         | 2M evts                          |
|         | Diffusion of $c+\overline{c}$   |                                     |                                   |                                  |
|         | $\Lambda_c 	o \pi \mathrm{K} p$ | 1.3k evts                           | 310k evts                         | 4M evts                          |
|         | Charm hadronization             |                                     |                                   |                                  |
|         | Prompt $D^0 \to \pi K$          | 0.2M evts                           | 50M evts                          | 0.6B evts                        |
|         | Tri-Gluon Corr. via TSSA        |                                     |                                   |                                  |

• Trigger (MBD, jet,  $\gamma$ ) cannot get us to open HF

 Streaming output, however, does in p+p in p+A

| Year | Species                    | $\sqrt{s_{NN}}$ | Cryo    | Physics     | Rec. Lum.                                     | Samp. Lum.                 |
|------|----------------------------|-----------------|---------|-------------|-----------------------------------------------|----------------------------|
|      |                            | [GeV]           | Weeks   | Weeks       | z  <10 cm                                     | z  <10 cm                  |
| 2023 | Au+Au                      | 200             | 24 (28) | 9 (13)      | $3.7~(5.7)~{ m nb}^{-1}$                      | $4.5$ (6.9) ${ m nb}^{-1}$ |
| 2024 | $p^{\uparrow}p^{\uparrow}$ | 200             | 24 (28) | 12 (16)     | 0.3 (0.4) pb <sup>-1</sup> [5 kHz]            | 45 (62) pb <sup>-1</sup>   |
|      |                            |                 |         |             | 4.5 (6.2) pb <sup>-1</sup> [10%- <i>str</i> ] |                            |
| 2024 | $p^{\uparrow}$ +Au         | 200             | -       | 5           | 0.003 pb <sup>-1</sup> [5 kHz]                | $0.11 \ {\rm pb^{-1}}$     |
|      |                            |                 |         |             | $0.01 \ { m pb}^{-1} \ [10\%-str]$            |                            |
| 2025 | Au+Au                      | 200             | 24 (28) | 20.5 (24.5) | 13 (15) $nb^{-1}$                             | 21 (25) nb <sup>-1</sup>   |

### Commissioning +Initial QGP Data

| Year | Species                    | $\sqrt{s_{NN}}$ | Cryo    | Physics           | Rec. Lum.                                     | Samp. Lum.               |                       |
|------|----------------------------|-----------------|---------|-------------------|-----------------------------------------------|--------------------------|-----------------------|
|      |                            | [GeV]           | Weeks   | Weeks             | $ z <\!\!10~{ m cm}$                          | z  <10 cm                | Commissioning         |
| 2023 | Au+Au                      | 200             | 24 (28) | 9 (13)            | $3.7~(5.7)~{ m nb}^{-1}$                      | $4.5~(6.9)~{ m nb}^{-1}$ | +Initial QGP Dat      |
| 2024 | $p^{\uparrow}p^{\uparrow}$ | 200             | 24 (28) | 12 (16)           | 0.3 (0.4) pb <sup>-1</sup> [5 kHz]            | 45 (62) ${ m pb}^{-1}$   | <b>Reference Data</b> |
|      |                            | S               | itrean  | ning $ ightarrow$ | 4.5 (6.2) pb <sup>-1</sup> [10%- <i>str</i> ] |                          |                       |
| 2024 | $p^{\uparrow}$ +Au         | 200             | _       | 5                 | $0.003~{ m pb}^{-1}$ [5 kHz]                  | $0.11 \ { m pb}^{-1}$    |                       |
|      |                            |                 |         |                   | $0.01~{ m pb}^{-1}$ [10%-str]                 |                          |                       |
| 2025 | Au+Au                      | 200             | 24 (28) | 20.5 (24.5)       | $13$ (15) $\mathrm{nb}^{-1}$                  | 21 (25) nb <sup>-1</sup> |                       |

| Year | Species                    | $\sqrt{s_{NN}}$ | Cryo    | Physics           | Rec. Lum.                                     | Samp. Lum.               |                                         |
|------|----------------------------|-----------------|---------|-------------------|-----------------------------------------------|--------------------------|-----------------------------------------|
|      |                            | [GeV]           | Weeks   | Weeks             | z  <10 cm                                     | z  <10 cm                | Commissioning                           |
| 2023 | Au+Au                      | 200             | 24 (28) | 9 (13)            | $3.7~(5.7)~{ m nb}^{-1}$                      | 4.5 (6.9) $nb^{-1}$      | +Initial QGP Data                       |
| 2024 | $p^{\uparrow}p^{\uparrow}$ | 200             | 24 (28) | 12 (16)           | 0.3 (0.4) pb <sup>-1</sup> [5 kHz]            | 45 (62) pb <sup>-1</sup> | <b>Reference Data</b>                   |
|      |                            | S               | itrean  | ning $ ightarrow$ | 4.5 (6.2) pb <sup>-1</sup> [10%- <i>str</i> ] |                          |                                         |
| 2024 | $p^{\uparrow}$ +Au         | 200             | _       | 5                 | $0.003~{ m pb}^{-1}$ [5 kHz]                  | $0.11\mathrm{pb}^{-1}$   | Cold OCD Data                           |
|      |                            | S               | trean   | ning $ ightarrow$ | $0.01~{ m pb}^{-1}$ [10%-str]                 |                          | • • • • • • • • • • • • • • • • • • • • |
| 2025 | Au+Au                      | 200             | 24 (28) | 20.5 (24.5)       | $13~(15)~{ m nb}^{-1}$                        | 21 (25) nb <sup>-1</sup> |                                         |



| Year | Species                    | $\sqrt{s_{NN}}$ | Cryo    | Physics           | Rec. Lum.                            | Samp. Lum.               |                       |
|------|----------------------------|-----------------|---------|-------------------|--------------------------------------|--------------------------|-----------------------|
|      |                            | [GeV]           | Weeks   | Weeks             | z  $<$ 10 cm                         | z  <10 cm                | Commissioning         |
| 2023 | Au+Au                      | 200             | 24 (28) | 9 (13)            | 3.7 (5.7) nb $^{-1}$                 | 4.5 (6.9) $nb^{-1}$      | +Initial QGP Data     |
| 2024 | $p^{\uparrow}p^{\uparrow}$ | 200             | 24 (28) | 12 (16)           | 0.3 (0.4) pb <sup>-1</sup> [5 kHz]   | 45 (62) pb <sup>-1</sup> | <b>Reference Data</b> |
|      |                            | S               | itrean  | ning $ ightarrow$ | 4.5 (6.2) pb <sup>-1</sup> [10%-str] |                          |                       |
| 2024 | $p^\uparrow+\mathrm{Au}$   | 200             | _       | 5                 | $0.003~{ m pb}^{-1}$ [5 kHz]         | $0.11 \ { m pb}^{-1}$    | Cold OCD Data         |
|      |                            | S               | trean   | ning $ ightarrow$ | $0.01~{ m pb}^{-1}~[10\%$ -str]      |                          |                       |
| 2025 | Au+Au                      | 200             | 24 (28) | 20.5 (24.5)       | $13~(15)~{ m nb}^{-1}$               | 21 (25) nb <sup>-1</sup> | Full QGP Data         |

| Year | Species                    | $\sqrt{s_{NN}}$ | Cryo            | Physics           | Rec. Lum.                            | Samp. Lum.               |                       |
|------|----------------------------|-----------------|-----------------|-------------------|--------------------------------------|--------------------------|-----------------------|
|      |                            | [GeV]           | Weeks           | Weeks             | z  $<$ 10 cm                         | z  <10 cm                | Commissioning         |
| 2023 | Au+Au                      | 200             | 24 (28)         | 9 (13)            | $3.7~(5.7)~{ m nb}^{-1}$             | 4.5 (6.9) $nb^{-1}$      | +Initial QGP Data     |
| 2024 | $p^{\uparrow}p^{\uparrow}$ | 200             | 24 (28) 12 (16) |                   | 0.3 (0.4) pb <sup>-1</sup> [5 kHz]   | 45 (62) pb <sup>-1</sup> | <b>Reference Data</b> |
|      |                            | S               | itrean          | ning $ ightarrow$ | 4.5 (6.2) pb <sup>-1</sup> [10%-str] |                          |                       |
| 2024 | $p^{\uparrow}$ +Au         | 200             | _               | 5                 | $0.003~{ m pb}^{-1}$ [5 kHz]         | $0.11 \ { m pb}^{-1}$    | Cold OCD Data         |
|      |                            | S               | trean           | ning $ ightarrow$ | $0.01~{ m pb}^{-1}~[10\%$ -str]      |                          |                       |
| 2025 | Au+Au                      | 200             | 24 (28)         | 20.5 (24.5)       | 13 (15) nb $^{-1}$                   | 21 (25) nb <sup>-1</sup> | Full QGP Data         |

Data-taking fast approaching!

University of Colorado Boulder

• What are some prospective physics plans?

# **Jet Physics Projections**



Projected  $R_{AA}$ 's Projected  $\gamma$ +jets balance • sPHENIX  $R_{AA}$  reach nicely complements existing LHC kinematics

- sPHENIX  $x_{J\gamma}$  accesses partonic energy loss at different QGP T
- For more details, see Tim Rinn's talk!

University of Colorado Boulder

# **Heavy Flavor Physics Projections**



### **b-jet Invariant Mass**

University of Colorado Boulder

Open HF  $R_{AA}$ 

- Jet program naturally lends itself to heavy-flavor jets
- Open HF also viable w/sPHENIX for mass dependent studies
- For more details, see Cameron Dean's talk!

# **Quarkonia Projections**



#### $\Upsilon$ Mass

University of Colorado Boulder

 $\Upsilon R_{AA}$  v.  $N_{Part}$  and  $p_T$ 

- Measure  $\Upsilon$  1S, 2S, and 3S sequential suppression

- Expect monotonic increasing suppression w/nS state
- Measure as a function of  $N_{part}$  and  $p_T$
- For more details, see Marzia Rosati's talk!

# **Cold QCD Projections**



#### TSSA for photons in p+p



I SSA for hadrons in p+p and p+,

- TSSA: Transverse Single Spin Asymmetry
  - Accesses the spin structure of nucleons
- For more details, see Ralf Seidl's talk!
- Also, see Ron Belmont's talk for bulk physics!



### • The sPHENIX detector at RHIC will feature:

- High precision vertexing and tracking
  - Via the combined MVTX-INTT-TPC-TPOT system
- Full calorimetry for measurement of jets, photons, and tagging  $\Upsilon o$ ee
  - Covers 2 $\pi$  in azimuth,  $\pm$  1.1 in  $\eta$





### • The sPHENIX detector at RHIC will feature:

- High precision vertexing and tracking
  - Via the combined MVTX-INTT-TPC-TPOT system
- Full calorimetry for measurement of jets, photons, and tagging  $\Upsilon 
  ightarrow$  ee
  - Covers 2 $\pi$  in azimuth,  $\pm$  1.1 in  $\eta$
- Physics program of:
  - Partonic energy loss and substructure modification
  - Sequential suppression of Quarkonia states
  - Initial state physics in cold-QCD program
  - Bulk physics, open heavy flavor, and more!



### • The sPHENIX detector at RHIC will feature:

- High precision vertexing and tracking
  - Via the combined MVTX-INTT-TPC-TPOT system
- Full calorimetry for measurement of jets, photons, and tagging  $\Upsilon 
  ightarrow$  ee
  - Covers 2 $\pi$  in azimuth,  $\pm$  1.1 in  $\eta$
- Physics program of:
  - Partonic energy loss and substructure modification
  - Sequential suppression of Quarkonia states
  - Initial state physics in cold-QCD program
  - Bulk physics, open heavy flavor, and more!

First collisions expected Spring 2023!