Predictions for sPHENIX workshop 2022, RIKEN BNL Research Center, July 20-22, 2022

MATTER+LBT (JETSCAPE) based predictions for sPHENIX jet measurements

AMIT KUMAR McGill University

(On behalf of JETSCAPE collaboration)

□ Jet evolution in quark-gluon plasma

- □ JETSCAPE framework overview Multi-stage jet energy loss (Ex: MATTER+LBT) Coherence effect and reduction of jet-quenching strength Jet-medium response through recoils
- □ Jet and leading hadron suppression at RHIC and LHC

Predictions for inclusive jets, groomed jet observables, photon-triggered jet at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Jet transport coefficients in hot/cold nuclear medium

□ Factorized approach to jet evolution

Higher-twist formalism: (collinear expansion)

$$\frac{dN}{dyd\mu^2} = \frac{\alpha_s}{2\pi} \frac{P_{qg}(y)}{\mu^2} \left[1 + \int_{\xi_o^+}^{\xi_o^+ + \tau^+} d\xi^+ K(\xi^+, \xi_o^+, y, q^+, \mu^2) \right];$$

$$K(\xi^+, \xi_o^+, y, q^+, \mu^2) = \frac{1}{y(1-y)\mu^2(1+\chi)^2} \left\{ 2 - 2\cos\left(\frac{\xi^+ - \xi_o^+}{\tau^+}\right) \right\} \times \left\{ C_{qg}^{\hat{q}^-} \hat{q} + C_{qg}^{\hat{e}^-} \hat{e} + C_{qg}^{\hat{e}^-} \hat{e}_2 \right\}$$

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

Transport coefficient \hat{q} :

Average transverse momentum squared per unit length

$$\hat{q}(\vec{r},t) = \frac{\langle k_{\perp}^2 \rangle}{L} \propto \langle M | F_{\perp}^+(y^-,y_{\perp})F^{+\perp}(0) | M \rangle$$

Transport coefficient $\stackrel{\wedge}{e}$:

 $\hat{e}(\vec{r},t) = \frac{\langle k_z \rangle}{L} \propto \langle M | \partial^- A^+(y^-, y_\perp) A^+(0) | M \rangle$

Transport coefficient \hat{e}_2 :

 $\hat{e}_2(\vec{r},t) = \frac{\langle k_z^2 \rangle}{L} \propto \langle M | F^{+-}(y^-, y_\perp) F^{+-}(0) | M \rangle$

Complementary studies between RHIC and LHC plasma

Transport coefficient \hat{q} :

Average transverse momentum squared per unit length

$$\hat{q}(\vec{r},t) = \frac{\langle \vec{k}_{\perp}^2 \rangle}{L} \propto \langle M | F_{\perp}^+(y^-,y_{\perp}) F^{+\perp}(0) | M \rangle$$

- **Based on fit to** single hadron R_{AA} at RHIC and LHC
- $\Box \hat{q}/T^3$ is higher at **RHIC** collision energy compared to LHC energy

Multi-scale dynamics of jets in evolving plasma

High E, High Q phase: (Radiation dominant)

High temperature

Low E, Low Q phase: (Thermal partons)

Low temperature

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

High E, Low Q phase: (Scattering dominant)

(1) How to extract shortdistance structure of QGP in terms of PDF?

(2) Extract jet energy loss transport coefficient for transverse broadening and longitudinal broadening $\hat{q}, \hat{e}, \hat{e}_{\gamma}$ etc?

(3) Typical scale for parton energy loss to switch from radiation dominant to scattering dominant phase

(4) Mechanism of Jet-medium response

JETSCAPE instrument: a unified framework for heavy-ion collisions

- Modular, extensible and task-based event generator
- Framework is modular to "multi-stage", "energy-los models
- Statistical package to perform Bayesian analysis

GitHub JETSCAPE 3.0 is available: **<u>github.com/JETSCAPE</u>**

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

	+ JETSCAPE framework	(arXiv:1903.07706)
S"	JETSCAPE pp19 tune	(arXiv:1910.05481) (arXiv:2204.01163)

See talk by Raymond (Fri 9AM)

AA collisions within JETSCAPE framework

A possible choice of models to generate AA collisions

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

JETSCAPE AA (arXiv:2204.01163)

Jet evolution in high virtuality and low virtuality phase

□ MATTER: In-medium DGLAP evolution equation

In limit: $\langle k_{\perp}^2 \rangle \sim \hat{q}\tau^- \langle l_{\perp}^2 \sim Q^2$

Formation time: $\tau^- \sim q^-/Q^2$

$$\frac{\partial D\left(z,Q^{2},\zeta_{i}^{-}\right)}{\partial \log Q^{2}} = \frac{\alpha_{S}}{2\pi} \int_{z}^{1} \frac{dy}{y} \left[P_{+}\left(y\right) D\left(\frac{z}{y},Q^{2},\zeta_{i}^{-}\right) + \frac{Vacuum term}{\sqrt{y}} + \left(\frac{P(y)}{y\left(1-y\right)}\right)_{+} D\left(\frac{z}{y},Q^{2},\zeta_{i}^{-}+\tau^{-}\right) \times \int_{\zeta_{i}^{-}}^{\zeta_{i}^{-}+\tau^{-}} d\zeta^{-} \frac{\hat{q}\left(\zeta^{-}\right)}{Q^{2}} \left\{ 2 - 2\cos\left(\frac{\zeta^{-}-\zeta_{i}^{-}}{\tau^{-}}\right) \right\} \right]$$

Medium term

Repeating single emission single scattering kernel

Virtuality ordered emission approximation

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

LBT: Based on linear Boltzmann transport equation

Evolution of phase-space distribution

$$p_i \cdot \partial f_i(x_i, p_i) = E_i(\mathcal{R}_{el} + \mathcal{R}_{inel})$$

Elastic scattering: LO $2 \leftrightarrow 2$ process

Inelastic scattering: Single gluon emission rate using Higher Twist (depends on \hat{q})

Multiple scattering and single emission

JETSCAPE pp19 tune

Optimized value of parameters:

- ← Lambda QCD: $\Lambda_{\rm OCD} = 200 {\rm MeV}$
- + Initial virtuality (off-shellness) of the parton after hard scattering: $Q_{in} = \frac{P_T}{2}$

Inclusive jet cross section

Jet shape

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

Jet Mass

Soft sector calibration

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

TRENTO+ Free-streaming + VISHNU+UrQMD Bayesian calibration [Nature Physics vol15, 1113–1117 (2019)]

10

Scale-resolution dependence of jet-medium interaction

Coherence effects

Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, PLB707, 156-159 (2012) J. Casalderrey-Solana, E. Iancu, JHEP08, 015 (2011)

- Scale evolution of QGP constituent distribution Kumar, Majumder, Shen, PRC101, 034908 (2020)
- Less interaction for large- Q^2 partons \rightarrow Implemented in MATTER

Effective jet-quenching strength $\implies \hat{q}_{\rm HTL} \cdot f(Q^2)$

$$\hat{q}_{\rm HTL} = C_a \frac{42\zeta(3)}{\pi} \alpha_{\rm s}^{\rm run} \alpha_{\rm s}^{\rm fix} T^3 \ln \left[\frac{2ET}{6\pi T^2 \alpha_{\rm s}^{\rm fix}} \right]$$

$$f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)}$$

$= 5.02 \,\mathrm{leV}$ Jets and Leading hadron suppression at γ

Effective jet-quenching strength $\implies \hat{q}_{\rm HTL} \cdot f(Q^2)$

Strong coherence effects are observed for high- p_T hadrons

Collision energy dependence of Jet and Hadron R_{AA}

Pb+Pb at 2.76 TeV

No further retuning of parameters done

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

Au+Au at 200 GeV

Centrality dependence of Jet and hadron R_{AA}

Quenching in hadronic phase is not included. Jet energy loss turns off when T < 160 MeV No further retuning of parameters done.

Jet Fragmentation function

Inclusion of heavy-quarks in MATTER and LBT

Allows to explore (1) parton flavor energy loss dependence (2) the mass and momentum dependence

Flavor dependence is comparable with Experimental measurements

No further retuning of parameters done.

Predictions at $\sqrt{s_{NN}} = 200 \text{GeV}, 0 - 10\%$ (MATTER+LBT@JETSCAPE)

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

17

Jet R-dependence of Inclusive jets and charged jets

No strong jet cone size dependence is observed

Prediction for Jet fragmentation function

Jet fragmentation function

 $D(p_T)$ for higher jet p_T^{jet} is strongly modified

Jet grooming and soft drop condition

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

By construction the condition fails for wide-angle soft radiation

Prediction for Jet splitting function (z_g **)**

Momentum fraction in the hardest splitting of jet (z_g)

-

Prediction for Jet splitting angle (θ_{o})

Groomed jet $\theta_g = r_g/R$

$$z_{cut} = 0.2, \beta = 0$$

The nuclear modification are not significant within the statistical uncertainty

The trend is different **compared LHC collision** energies

Amit Kumar (Predictions for sPHENIX), RBRC, July 20th, 2022

r_{g} = Opening angle between two prongs

Prediction for groomed jet mass (m_{o})

Groomed jet m_g Without any smearing

Nuclear modifications are not significant in low groomed jet mass region

Prediction for \gamma-triggered jet results

- JETSCAPE a unified framework for the heavy-ion community successfully demonstrate that a unified approach effectively captures the physics of multi-scale jet quenching in QCD plasma.
- Simultaneous description of inclusive jets, high-pT hadrons, jet substructure observables • pp19 tune give results consistent to the experimental data and PYTHIA
- - Jet R_{AA} and charged hadron R_{AA}
 - Constrain Jet R_{AA} and charged-hadron R_{AA} at 0-10% (5.02TeV) • Fit parameters provide a consistent description at two collision energies
 - and different centrality

Predictions at $\sqrt{s_{NN}} = 200$ GeV most central collisions

- Jet cone size R dependence of Jet R_{AA} and charged jet R_{AA}
- $\bullet p_T$ dependence of Jet fragmentation function
- Groomed jet observables
- Photon-triggered jets

Summary

Office of Science

Sensitivity of inclusive jets from recoils

