

Recent Hard Probes Results and Prospects from the STAR Experiment

Rongrong Ma (For the STAR Collaboration) Brookhaven National Laboratory

Outline

- STAR Detector
- Hard Probes
 - Jets
 - Heavy Flavor
- Future Plans (2023+25)

STAR Detector

STAR Detector

Hard Probes -- Jets

Jet Sub-structure in p+p Collisions

٠

Detroit Tune for RHIC

- A new PYTHIA 8 tune based on RHIC and CDF data, with MPI/UE parameters adjusted and PDF updated
- Provide a good description of RHIC data at midrapidity

STAR, PRD 105 (2022) 016011

Are Jets Quenched in p+Au?

- High vs. low event activity events
 - Similar level of suppression for trigger-side and recoil-side semi-inclusive jets
 - Similar jet mass distributions
- Jet quenching picture is disfavored in 200 GeV p+Au collisions

Inclusive Charged Jet R_{CP}

STAR, PRC 102 (2020) 054913

- Combinatorial jets removed by requiring high- $p_{\rm T}$ leading constituent
- Strong suppression in central collisions
 - Consistent with LHC measurements in the overlapping kinematic range
 - Different $p_{\rm T}$ dependence compared to inclusive charged hadrons

Semi-inclusive γ -jet vs. π^0 -jet I_{AA}

 γ + jet

- \checkmark Vary parton flavor, path length
 - Different spectrum shapes
- Combinatorial jets removed statistically with event mixing
 - Mix tracks from events of similar characteristics
 - Remove combinatorial jets precisely on an ensemble basis
 - Does not impose any fragmentation bias
 - Enable jet measurements down to low $p_{\rm T}$ and up to large radius

VS.

 π^0 + jet

Intra-jet Broadening

$$\Re^{\frac{0.2}{0.5}} = \frac{dN/dp_T \ (R = 0.2)}{dN/dp_T \ (R = 0.5)}$$

- Ratio of yields: calculable in pQCD
- Smaller ratios in Au+Au compared to p+p → redistribution of energy to larger angles
- Similar behavior for both γ and π^0 triggers

Jet Acoplanarity

• Significant broadening of acoplanarity distributions in Au+Au collisions for R = 0.5 jets with $10 < p_T < 15$ GeV/c \rightarrow Medium wake? Scattering off medium constituents?

K. Rajagopal, Jet Quenching in QGP, ECT* 2022

Jet Sub-structure in Au+Au

STAR, PRC 105 (2022) 044906

- ✓ Suppress combinatorial jets
 - ✓ HardCore jet: negligible background contribution
 - ✓ Matched jet: all constituents down to 0.2 GeV/c
- ✓ Study energy loss for wide (large θ_{SJ}) and narrow (small θ_{SJ}) recoil jets

$$z_{SJ} = \frac{\min(p_{T,SJ1}, p_{T,SJ2})}{p_{T,SJ1} + p_{T,SJ2}}, \, \theta_{SJ} = \Delta R(SJ1, SJ2)$$

HardCore Jet A_J : Au+Au vs. p+p

STAR, PRC 105 (2022) 044906

$$A_J \equiv rac{p_{\mathrm{T,jet}}^{\mathrm{trigger}} - p_{\mathrm{T,jet}}^{\mathrm{recoil}}}{p_{\mathrm{T,jet}}^{\mathrm{trigger}} + p_{\mathrm{T,jet}}^{\mathrm{recoil}}}$$

- Different A_J distributions for narrow and wide jets
- Larger < A_J > in Au+Au compared to p+p, due to jet quenching, for both narrow and wide HardCore jets

Matched Jet A_J : Au+Au vs. p+p

STAR, PRC 105 (2022) 044906

$$A_J \equiv rac{p_{\mathrm{T,jet}}^{\mathrm{trigger}} - p_{\mathrm{T,jet}}^{\mathrm{recoil}}}{p_{\mathrm{T,jet}}^{\mathrm{trigger}} + p_{\mathrm{T,jet}}^{\mathrm{recoil}}}$$

- Similar A_J distributions for narrow and wide jets
- Similar < A_J > in Au+Au compared to p+p → lost energy recovered by low-p_T constituents in the selected jet population

Yield Suppression of D^0 -tagged Jets

- Only look at jets containing a D⁰ above 5 GeV/c
 - No combinatorial jets by definition
- Unfolded with PYTHIA8 fragmentation: need to be improved
- Strong suppression at low $p_{T,jet}$; hint of a rising R_{CP} with $p_{T,jet}$

Hard Probes -- Heavy Flavor

$D^0 R_{AA} \& v_2$ in Au+Au Collisions

• Significant suppression of D^0 at high p_T ; v_2 follows NCQ scaling

→ Strong interactions between charm quarks and QGP; constrain diffusion coefficient

Mass Dependence of Parton Energy Loss

STAR, arXiv:2111.14615

STAR

- Clear mass hierarchy of HF electron $R_{AA} \rightarrow b$ quarks lose less energy than c quarks
- $b \rightarrow e$ could be used for tagging *b*-jets

07/20/2022

Rongrong Ma, RBRC (Predictions for sPHENIX)

Charm Hadrochemistry

- Clear enhancements of D_s and Λ_c to D^0 ratios compared to PYTHIA (coalescence is important)
 - \rightarrow Redistribution of charm quarks in HI collisions?
- Need to extend measurements down to zero p_T (total charm cross section). How about p+p at RHIC?

Isobar Collisions: J/ $\psi R_{AA} \& v_2$

- Indication of a global trend of R_{AA} vs. N_{part} for different colliding systems and energies \rightarrow Interplay of dissociation, regeneration and cold nuclear matter effects
- v_2 consistent with zero below 4 GeV/c \rightarrow Small regeneration and/or small charm quark flow

Au+Au Collisions: Y R_{AA} vs. N_{part}

STAR, arXiv:2207.06568

- All three Y states are suppressed
- Hint of increasing suppression from peripheral to central collisions
- First observation of sequential suppression for three Y states at RHIC
 - Upper limit for $\Upsilon(3S)$ in 0-60%
 - >3 σ difference between $\Upsilon(1S)$ and $\Upsilon(3S)$
 - $\Upsilon(2S) R_{AA}$ is in between

ΥR_{AA} vs. N_{part} : RHIC vs. LHC

Y(1S): similar level of suppression between RHIC and LHC

- Mostly due to strong suppression of excited states and cold nuclear matter effects
- Primordial $\Upsilon(1S)$ not significantly suppressed
- $\Upsilon(2S)$: indication of less suppression at RHIC in peripheral collisions
- Model calculations
 - $\Upsilon(1S)$: larger separation between RHIC and LHC
 - $\Upsilon(2S)$: tend to undershoot data at the LHC

Transport Model: PRC 96 (2017) 054901 OQS+pNRQCD: 2205.10289

STAR, arXiv:2207.06568

Future Plans (2023+25)

STAR Beam Use Request 2022

Table 1: Proposed Run-23 - Run-25 assuming 28 cryo-weeks of running every year, and 6 weeks set-up time to switch species in 2024. For p+p and p+Au sampled luminosities assume a "take all" trigger. For Au+Au we provide the requested event count for our minimum bias trigger, and the requested sampled luminosity from our a high- p_T trigger that covers all v_z .

$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$20{ m B}~/~40~{ m nb^{-1}}$	2023 + 2025
200	p+p	$235~{ m pb}^{-1}$	2024
200	$p{+}\mathrm{Au}$	$1.3 {\rm \ pb^{-1}}$	2024

• All projections are based on existing measurements

Projection: *γ-jet*

Suppression & intra-jet broadening

Jet acoplanarity

Projection: Jet Substructure Dependent Energy Loss

• Larger jet kinematic reach and finer resolution

Projection: $J/\psi v_1$ and v_2

- v_1 : probe initial tilt of the medium
- v_2 : good precision to distinguish models (EPD can greatly suppress non-flow)
 - Connection to $D^0 v_2$ through regenerated J/ ψ

07/20/2022

Projection: $\psi(2S)$ Suppression

• First of such measurement in Au+Au collisions at RHIC

Projection: Y Suppression

- Entering precision era
- Expect a precision of 30% statistical uncertainty for $\Upsilon(3S)$ measurements

Summary

- High-impact and insightful hard probes program at STAR
 - Jets: study parton shower in vacuum and energy loss mechanism in QGP through (semi-)inclusive and substructure measurements
 - Open HF: constrain spatial diffusion coefficient; change of hadronization process
 - Quarkonia: probe in-medium QCD force and medium temperature

• Bright future ahead

- Precision era
- Extended kinematic reach
- New channels
- More differential measurements

Projected Kinematic Reach

Backup

Semi-inclusive γ -jet vs. π^0 -jet I_{AA}

- ✓ Vary parton flavor, path length
 - Different spectrum shapes

• Combinatorial jets removed statistically with event mixing

$$I_{AA} = \frac{dN/dp_{T_{AA}}}{dN/dp_{T_{pp}}}$$

- Strong suppression at high $p_{\rm T}$
- Larger suppression for R = 0.2than R = 0.5; different shapes
- Similar suppression for γ -jet and π^0 -jet within uncertainties
- No significant trigger $E_{\rm T}$ dependence

STAR

Jet Acoplanarity

• No obvious sign of broadening for R = 0.2 jets

Radial Profile of D^0 -tagged Jets

- Distance between D^0 and jet axis
- Unfolded with PYTHIA8 fragmentation: need to be improved
- No significant difference between central and peripheral collisions
 - Will extend to lower $D^0 p_T$

Au+Au Collisions: Y R_{AA} vs. p_T

- No significant $p_{\rm T}$ dependence seen
- Can constrain model calculations