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Jet substructure observables

Jet substructure in small collision systems (pp, e+e−):

• Large variety of techniques: mMDT, SoftDrop, ...
Dasgupta, Fregoso, Marzani, Salam, 1307.0007, Larkoski, Marzani, Soyez, Thaler, 1402.2657

• Many applications: boosted objects tagging, precision determination of αs ,...

Jet substructure in AA collisions:

• Vacuum baseline under pQCD control.

• Tuned to be sensitive to specific medium effects.

Dynamically groomed jet angle

• Good pQCD control, but plagued by large NP corrections at low pt .

• Sensitivity to the coherence angle of the medium θc .

• Can help to constrain jet quenching models.
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Dynamically groomed distributions

Dynamical grooming techniques proposed by

Mehtar-Tani, Soto-Ontoso, Tywoniuk, 1911.00375

Definition

Tag the hardest declustering in all the C/A
sequence, with hardness mesure
κ(a) = z(1− z)pt(∆R/R)a.

Then measure the ktg = z∆R/R or θg = ∆R of
this branching.
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Contrary to Soft Drop, only one free parameter a ⇒ easier to systematically study the
grooming parameter dependence.

Grooming condition is set on a “jet-by-jet” basis.
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All order ktg calculation in pp

Cumulative distribution:

Σ(ktg ) =
1

σ0

∫ ktg

0

dk ′tg
dσ(a)

dk ′tg

Contrary to many jet observables, the log resummation does not exponentiate:
Catani, Trentadue, Turnock, B. Webber, 1993

Σ(kt,g ) = 1− ᾱ ln2

(
1

kt,g

)
+

1 + a + a2

6a
ᾱ2 ln4

(
1

ktg

)
+O(ᾱ3)

The log accuracy is then defined at the level of Σ:

Σ(ktg ) =
∞∑
n=0

αn
s

2n∑
m=0

cnm lnm(ktg ) ,

Def.: NpDL accuracy ⇔ cnm known ∀n and 2n−p ≤ m ≤ 2n.
Banfi, Salam, Zanderighi, 2005
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All order ktg calculation in pp PC, Soto-Ontoso, Takacs, 2103.06566

Σ(kt,g ) =

∫ 1

0

dz

∫ 1

0

dθP̃(z , θ)∆(κ|a)Θ(kt,g − zθ)

with

P̃(z , θ) =

[
2α2`

s (zθQ)Ci

πzθ
−2CiCA

π2

3

(αs

2π

)2 ln(z)

z

]
Θ
(
e−Bi − z

)
, and ln ∆(κ|a) = −

∫
zθa≥κ

P̃(z , θ)

The physical effects that come into play at N2DL:

X Hard collinear splittings

X Running coupling corrections at two loops

X Non global configurations Dasgupta, Salam, 2001

× No “clustering” logarithms! Kang, Lee, Liu, Ringer, 2019, Lifson, Salam, Soyez, 2020

X C1 term ⇒ requires a O(αs) matching.
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N2DL resummation matched to LO PC, Soto-Ontoso, Takacs, 2103.06566

Comparison to parton-level MCs
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Comments

Good agreement with parton-level MCs.

Small differences due to sub-leading effects at N2DL.

Importance at low ktg of the infrared cut in the MC parton shower.
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Comparison to ALICE data
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Comments

At such low pt , hadronization corrections are large.

Good agreement once a NP factor determined from MCs is included.
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The Dynamically groomed θg distribution

The opening angle θg of the splitting is measured: only Sudakov safe.

N2DL resummation achieved by taking the limit of IRC safe distributions:

Σ(zg ) = lim
c→0

∫ 1

0

dz

∫ 1

0

dθ P̃(z , θ)∆(κ|a)Θ(zg − zθc)

Comparison to ALICE data: ALICE 2204.10246
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Modification of the phase space in heavy-ion collisions
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lo
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t f = tmed

t f
=

L

k⊥ = Qs

In-medium constraint: k2
⊥ ≥ q̂tf .

Out-medium condition: tf ≥ L.

NB: because of color coherence, emissions
”inside” with tf ≤ L is not modified if

θ ≤ θc = 2/
√

q̂L3

.

Phase-space at RHIC: lower pt0, lower q̂ ⇒ the
green region shrinks.
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Analytic toy calculation
Relatively hard intrajet medium-induced emissions
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DyG can select a semi-hard MIEs inside the jet.

From the factorization:

P̃vac(z , θ)→ P̃vac(z , θ) + ᾱs

√
q̂L2

z3pt
B(z , θ)︸ ︷︷ ︸

∼BDMPS-Z

Minimal angle of semi-hard MIEs,
θ ∼ Qs/ωc ∼ θc ⇒ transition around θc .
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Analytic toy calculation
θc dependent large angle energy loss:
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Coherence angle θc ∼ 2/

√
q̂L3 measures

resolution power of the medium.
Mehtar-Tani, Salgado, Tywoniuk, 2011 - Casalderrey-Solana, Iancu, 2011

Jets with θg ≥ θc lose more energy.

θg dependent energy loss implemented using
quenching weights.

θg ≥ θc

θg ≤ θc
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Dependence upon jet quenching model

Many jet quenching models have a notion of ”resolution scale” incorporated.

Example: Lres parameter in the Hybrid strong-weak coupling model.
Casalderrey-Solana, Gulhan, Hulcher, Milhano, Pablos, Rajagopal, 2015-17

Need for an ”orthogonal” observable to discriminate between models.
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Best experimental set-up

Kolmogorov-Smirnov distance measures the difference between the medium and vacuum
baseline. KS = max|ΣPbPb(θg )− Σpp(θg )|

Analytic results confirm our numerical findings.

”Ideal” set-up:

0.5 . a . 1 and R = 0.2︸ ︷︷ ︸
reduce medium response and background effects

0.1 0.3 0.5 0.7 1.0 2.0
a

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

ir
no

v
D

Analytic

w/o L fluct.
w/ L fluct.

0.1 0.3 0.5 0.7 1.0 2.0
a

0.00

0.05

0.10

0.15

0.20

K
ol

m
og

or
ov

-S
m

ir
no

v
D

JetMed

w/o L fluct.
w/ L fluct.



Introduction DyG to all orders DyG in AA collisions: role of θc Conclusion

sPHENIX opportunities: θg distribution in γ-jet events

Theoretical analysis that should be taken with a grain of salt.

γ-jet events reduce the effect from quark-gluon mixture,

and help to quantify the selection bias effect. See Brewer, Brodsky, Rajagopal, 2110.13159
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Summary

Analytical calculation of dynamically groomed jet substructure observables, up to N2DL
accuracy, supplemented by a LO matching and a Monte-Carlo estimation of NP
corrections.

Good agreement with ALICE data, within the uncertainty.

In heavy-ion collisions, observable strongly sensitive to the coherence angle θc of the
plasma, even when selection bias are reduced as in γ-jet events.

Further studies are necessary to see if a measurement in γ-jet is realistic at RHIC with
STAR or sPHENIX.

THANK YOU !
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