DyG in AA collisions: role of θ_c 000000

Dynamically groomed jet radius in heavy-ion collisions (towards sPHENIX predictions)

P. Caucal with A. Soto-Ontoso and A. Takacs

Brookhaven National Laboratory

sPHENIX workshop, July 20th, BNL

Based on JHEP07 (2021) 020 and PRD 105-11 (2022)

Introd	uction
00	

Jet substructure observables

- Jet substructure in small collision systems (pp, e^+e^-):
 - Large variety of techniques: mMDT, SoftDrop, ...

Dasgupta, Fregoso, Marzani, Salam, 1307.0007, Larkoski, Marzani, Soyez, Thaler, 1402.2657

- Many applications: boosted objects tagging, precision determination of $\alpha_{s},...$
- Jet substructure in AA collisions:
 - Vacuum baseline under pQCD control.
 - Tuned to be sensitive to specific medium effects.

Dynamically groomed jet angle

- Good pQCD control, but plagued by large NP corrections at low p_t .
- Sensitivity to the coherence angle of the medium θ_c .
- Can help to constrain jet quenching models.

Introduction

DyG to all order 00000 DyG in AA collisions: role of θ_c 000000

Conclusior 0

Dynamically groomed distributions

Dynamical grooming techniques proposed by Mehtar-Tani, Soto-Ontoso, Tywoniuk, 1911.00375

Definition

 Tag the hardest declustering in all the C/A sequence, with hardness mesure κ^(a) = z(1 - z)p_t(ΔR/R)^a.

 p_T

• Then measure the $k_{tg} = z\Delta R/R$ or $\theta_g = \Delta R$ of this branching.

Introduction

DyG to all order 00000 DyG in AA collisions: role of θ_c 000000

Conclusior 0

Dynamically groomed distributions

Dynamical grooming techniques proposed by Mehtar-Tani, Soto-Ontoso, Tywoniuk, 1911.00375

Definition

- Tag the hardest declustering in all the C/A sequence, with hardness mesure κ^(a) = z(1 - z)p_t(ΔR/R)^a.
- Then measure the $k_{tg} = z\Delta R/R$ or $\theta_g = \Delta R$ of this branching.

- Contrary to Soft Drop, only one free parameter a ⇒ easier to systematically study the grooming parameter dependence.
- Grooming condition is set on a "jet-by-jet" basis.

Introduction	DyG to all orders	DyG in AA collisions: role of θ_c	Conclusion
00	●0000	000000	O
All order k_{tg}	calculation in pp		

• Cumulative distribution:

$$\Sigma(k_{tg}) = rac{1}{\sigma_0} \int_0^{k_{tg}} \mathrm{d}k'_{tg} rac{\mathrm{d}\sigma^{(a)}}{\mathrm{d}k'_{tg}}$$

Contrary to many jet observables, the log resummation does not exponentiate:

Catani, Trentadue, Turnock, B. Webber, 1993

$$\Sigma(k_{t,g}) = 1 - \bar{\alpha} \ln^2 \left(\frac{1}{k_{t,g}}\right) + \frac{1 + a + a^2}{6a} \bar{\alpha}^2 \ln^4 \left(\frac{1}{k_{tg}}\right) + \mathcal{O}(\bar{\alpha}^3)$$

• The log accuracy is then defined at the level of Σ:

$$\Sigma(k_{tg}) = \sum_{n=0}^{\infty} \alpha_s^n \sum_{m=0}^{2n} c_{nm} \ln^m(k_{tg}),$$

Def.: $\mathbb{N}^p \mathbb{DL}$ accuracy $\Leftrightarrow c_{nm}$ known $\forall n$ and $2n - p \leq m \leq 2n$.

Banfi, Salam, Zanderighi, 2005

 Introduction
 DyG to all orders
 DyG in AA collisions: role of θ_c Conclusion

 00
 00000
 000000
 0

All order k_{tg} calculation in pp PC, Soto-Ontoso, Takacs, 2103.06566

$$\Sigma(k_{t,g}) = \int_0^1 \mathrm{d}z \int_0^1 \mathrm{d}\theta \widetilde{P}(z,\theta) \Delta(\kappa|a) \Theta(k_{t,g} - z\theta)$$

with

$$\widetilde{P}(z,\theta) = \left[\frac{2\alpha_s^{2\ell}(z\theta Q)C_i}{\pi z\theta} - 2C_iC_A\frac{\pi^2}{3}\left(\frac{\alpha_s}{2\pi}\right)^2\frac{\ln(z)}{z}\right]\Theta\left(e^{-B_i} - z\right), \text{ and } \ln\Delta(\kappa|a) = -\int_{z\theta^a \ge \kappa}\widetilde{P}(z,\theta)$$

The physical effects that come into play at N²DL:

- ✓ Hard collinear splittings
- $\checkmark\,$ Running coupling corrections at two loops
- \checkmark Non global configurations ${\tt Dasgupta, Salam, 2001}$
- \times No "clustering" logarithms! Kang, Lee, Liu, Ringer, 2019, Lifson, Salam, Soyez, 2020

$$\checkmark$$
 C_1 term \Rightarrow requires a $\mathcal{O}(\alpha_s)$ matching

Introduction 00	DyG to all orders 00●00	DyG in AA collisions: role of θ_c	Conclusion O		
$N^2 DL$ resummation matched to LO $_{\mbox{PC},\mbox{ Soto-Ontoso},\mbox{ Takacs},\mbox{ 2103.06566}}$ Comparison to parton-level MCs					
	DvG - a = 1	DyG - a = 2			

Comments

- Good agreement with parton-level MCs.
- Small differences due to sub-leading effects at N²DL.
- Importance at low k_{tg} of the infrared cut in the MC parton shower.

Introduction

DyG to all orders 000●0 DyG in AA collisions: role of θ_c 000000

Conclusion 0

Comparison to ALICE data

Comments

- At such low p_t , hadronization corrections are large.
- Good agreement once a NP factor determined from MCs is included.

Introduction DyG to all orders	DyG in AA collisions: role of θ_c	Conclusion
The Dynamically groomed (A distribution	

- $\bullet\,$ The opening angle θ_g of the splitting is measured: only Sudakov safe.
- N²DL resummation achieved by taking the limit of IRC safe distributions:

$$\Sigma(z_g) = \lim_{c \to 0} \int_0^1 \mathrm{d}z \int_0^1 \mathrm{d} heta \, \widetilde{P}(z, heta) \Delta(\kappa|a) \Theta(z_g - z heta^c)$$

• Comparison to ALICE data: ALICE 2204.10246

DyG in AA collisions: role of θ_c 00000

Modification of the phase space in heavy-ion collisions

- In-medium constraint: $k_{\perp}^2 \ge \hat{q}t_f$.
- Out-medium condition: $t_f \ge L$.
- NB: because of color coherence, emissions "inside" with $t_f \leq L$ is not modified if

$$\theta \leq \theta_c = 2/\sqrt{\hat{q}L^3}$$

• Phase-space at RHIC: lower p_{t0} , lower $\hat{q} \Rightarrow$ the green region shrinks.

 Introduction
 DyG to all orders
 DyG in AA collisions: role of θc
 Conclusion

 Analytic toy calculation
 Conclusion
 O

- DyG can select a semi-hard MIEs inside the jet.
- From the factorization:

$$\widetilde{P}_{
m vac}(z, heta)
ightarrow \widetilde{P}_{
m vac}(z, heta)+ \underbrace{ar{lpha}_s \sqrt{rac{\hat{q}L^2}{z^3 p_t}}\mathcal{B}(z, heta)}_{\sim
m BDMPS-Z}$$

• Minimal angle of semi-hard MIEs, $\theta \sim Q_s/\omega_c \sim \theta_c \Rightarrow$ transition around θ_c .

Introduction	DyG to all orders	DyG in AA collisions: role of θ_c	Conclusion
		000000	
Analytic toy calcula	ation		

 θ_c dependent large angle energy loss:

- Coherence angle θ_c ~ 2/√ĝL³ measures resolution power of the medium.
 Mehtar-Tani, Salgado, Tywoniuk, 2011 - Casalderrey-Solana, Iancu, 2011
- Jets with $\theta_g \geq \theta_c$ lose more energy.
- θ_g dependent energy loss implemented using quenching weights.

Dependence upon jet quenching model

- Many jet quenching models have a notion of "resolution scale" incorporated.
- $\bullet\,$ Example: ${\it L}_{\rm res}$ parameter in the Hybrid strong-weak coupling model.

Casalderrey-Solana, Gulhan, Hulcher, Milhano, Pablos, Rajagopal, 2015-17

• Need for an "orthogonal" observable to discriminate between models.

MC JetMed (weak coupling picture)

PC, Iancu, Mueller, Soyez, 2018

MC Hybrid model (hybrid strong/weak coupling picture)

Best experimental set-up

- Kolmogorov-Smirnov distance measures the difference between the medium and vacuum baseline. $\kappa s = \max |\Sigma_{PbPb}(\theta_g) \Sigma_{pP}(\theta_g)|$
- Analytic results confirm our numerical findings.
- "Ideal" set-up:

 $0.5 \lesssim a \lesssim 1$ and

reduce medium response and background effects

- Theoretical analysis that should be taken with a grain of salt.
- γ -jet events reduce the effect from quark-gluon mixture,
- and help to quantify the selection bias effect. See Brewer, Brodsky, Rajagopal, 2110.13159

Introduction	DyG to all orders	DyG in AA collisions: role of θ_c	Conclusion	
00	00000	000000		
Summarv				

- Analytical calculation of dynamically groomed jet substructure observables, up to N²DL accuracy, supplemented by a LO matching and a Monte-Carlo estimation of NP corrections.
- Good agreement with ALICE data, within the uncertainty.
- In heavy-ion collisions, observable strongly sensitive to the coherence angle θ_c of the plasma, even when selection bias are reduced as in γ -jet events.
- Further studies are necessary to see if a measurement in $\gamma\text{-jet}$ is realistic at RHIC with STAR or sPHENIX.

THANK YOU !