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Introduction
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Jet substructure observables

@ Jet substructure in small collision systems (pp, ete™):
e Large variety of techniques: mMDT, SoftDrop, ...

e Many applications: boosted objects tagging, precision determination of a,...

@ Jet substructure in AA collisions:

e Vacuum baseline under pQCD control.

e Tuned to be sensitive to specific medium effects.

Dynamically groomed jet angle

e Good pQCD control, but plagued by large NP corrections at low p;.
e Sensitivity to the coherence angle of the medium 6.

e Can help to constrain jet quenching models.
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Introduction
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Dynamically groomed distributions

Dynamical grooming techniques proposed by primary Lund plane - DyG (a=1)

@ Tag the hardest declustering in all the C/A
sequence, with hardness mesure
k() = z(1 — 2)p:(AR/R)?.

@ Then measure the kyz = zZAR/R or §; = AR of
this branching.
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Dynamically groomed distributions

Dynamical grooming techniques proposed by

@ Tag the hardest declustering in all the C/A
sequence, with hardness mesure
k() = z(1 — 2)p:(AR/R)?.

@ Then measure the kyz = zZAR/R or §; = AR of
this branching.

log(k,/GeV)

primary Lund plane - DyG (a=1)

log(R/6)

@ Contrary to Soft Drop, only one free parameter a = easier to systematically study the

grooming parameter dependence.

@ Grooming condition is set on a “jet-by-jet” basis.
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DyG to all orders
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All order kg calculation in pp

@ Cumulative distribution: . )
1 € dot?
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@ Contrary to many jet observables, the log resummation does not exponentiate:
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@ The log accuracy is then defined at the level of %:

Z( ktg Z Z Cnm ktg

n=0 m=0

Def.: NPDL accuracy < ¢, known Vn and 2n—p < m < 2n.
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DyG to all orders
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All order ktg calculation in PP Pc. Soto-Ontoso, Takacs, 2103.06566
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P(z,0) = -2G; CA7T (as)2 In(z)] © (e ¥ —z), andInA(k|a) = —/ P(z,0)

2T z 260>
The physical effects that come into play at N?DL:
v" Hard collinear splittings
Running coupling corrections at two loops

v

v Non global configurations
x No “clustering” logarithms!
v

C; term = requires a O(as) matching.
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DyG to all orders
00®00

N2 D I_ reSU m matlon matched tO I_O PC, Soto-Ontoso, Takacs, 2103.06566

Comparison to parton-level MCs

o DyG-a=1 DyG-a=2
800 < pr < 1000 GeV - Pythia8 Herwig7-Dip
041 |y| < 1.5, antik; (R = 0.4) T -~ Herwig7-AO LO+N?DL ]
S e
=~ TN | o
Sro02t Nt
0.1

@ Good agreement with parton-level MCs.

@ Small differences due to sub-leading effects at N2DL.

@ Importance at low kg, of the infrared cut in the MC parton shower. 5 /14




DyG to
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all orders

Comparison to ALICE data
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@ At such low p;, hadronization corrections are large.
@ Good agreement once a NP factor determined from MCs is included.
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DyG to all orders
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The Dynamically groomed 0, distribution

@ The opening angle 6, of the splitting is measured: only Sudakov safe.
@ N2DL resummation achieved by taking the limit of IRC safe distributions:

(z,) = ||m/ dz/ A6 P(z,6)A(|2)O(z, — 26°)

c—0

@ Comparison to ALICE data:
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DyG in AA collisions: role of 6.
®00000

Modification of the phase space in heavy-ion collisions

@ In-medium constraint: k% > §ty.
@ Out-medium condition: tf > L.

@ NB: because of color coherence, emissions
"inside” with tr < L is not modified if

0 <6.=2/\/4L3

log(k, = w@)

@ Phase-space at RHIC: lower p:g, lower § = the
log () log(1/6) green region shrinks.
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DyG in AA collisions: role of 6.
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Analytic toy calculation

Relatively hard intrajet medium-induced emissions

12— . . : :
1oL & | Toyshower, g-jet w a=01 | @ DyG can select a semi-hard MIEs inside the jet.
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Analytic toy calculation

0. dependent large angle energy loss:

DyG in AA collisions: role of 6.
00®000
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@ Coherence angle 6. ~ 2/1/§L3 measures
resolution power of the medium.

@ Jets with §; > 0. lose more energy.

@ ¢, dependent energy loss implemented using
quenching weights.

‘666/)0/9/
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Dependence upon jet quenching model

@ Many jet quenching models have a notion of "resolution scale” incorporated.

@ Example: L,es parameter in the Hybrid strong-weak coupling model.

Casalderrey-Solana, Gulhan, Hulcher, Milhano, Pablos, Rajagopal, 2015-17

@ Need for an "orthogonal” observable to discriminate between models.
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Best experimental set-up

@ Kolmogorov-Smirnov distance measures the difference between the medium and vacuum

baseline. ks = max|Tpypp(0) — Tpp(g)l

@ Analytic results confirm our numerical findings.

@ "lIdeal" set-up:
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reduce medium response and background effects




DyG in AA collisions: role of 6.
oooo0e

sPHENIX opportunities: 6, distribution in v-jet events

@ Theoretical analysis that should be taken with a grain of salt.
@ -jet events reduce the effect from quark-gluon mixture,

@ and help to quantify the selection bias effect.
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Conclusion
°

Summary

@ Analytical calculation of dynamically groomed jet substructure observables, up to N°DL
accuracy, supplemented by a LO matching and a Monte-Carlo estimation of NP
corrections.

@ Good agreement with ALICE data, within the uncertainty.

@ In heavy-ion collisions, observable strongly sensitive to the coherence angle 6. of the
plasma, even when selection bias are reduced as in y-jet events.

@ Further studies are necessary to see if a measurement in y-jet is realistic at RHIC with
STAR or sPHENIX.

THANK YOU !
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