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Heavy flavor and HF-jets capability at sPHENIX
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What can we achieve with both HF-hadron & HF-jet quenching?

Charm & bottom at not too large pr Modifications of heavy-quark jets:
e Collisional processes. e The same partonic interactions.
e Suppressed radiations from not only e [ess sensitive to hadronization model.

dead-cone effects, but also kinematics. e More sensitive to @ vs g — HF.

® Hadronization via fragmentation and e Medium excitations of a non-relativistic

coalescence. g -
moving particle.

Need all ingredients to study the modifications.




What do we want to calculate?

e Hadrons: Raa, v, of h*, D, B (v).

e Light and heavy-jets:

e Raa (V') and v, = use w/ hadron obs to study partonic transport & hadronization.

e Radius dependence = how energy is recovered around massless/massive jet parton.

e Hadron-in-jet fragmentation / HF-jet correlation

e Dp,ur(z, pr) to probe the medium-modified fragmentation.

e HQ diffusion with jet reference.



Our model: parton shower + LIDO i

e Pythia8 hard processes + shower down to scale Q.

Vac-like evolution
Time evolution

Vacuum-like evolution Medium, g,

e Partonic transport [LIDO: PRC100(2019)064911, JHEP05(2021)041] for @ < Qo & T > Tr.

e Vacuum shower + fragmentation (Pythia8) for partons escaping the QGP.



HQ jets from event generation

dndzue [ub/GeV]

jet
e

do/dp

do/dpr/dn [mb/GeV?]

10734 — Inclusve, R=0.4

—— c-jets,R=0.4
1075 —— bijet,R=0.4
10774
10724
10-11
107

10!
Pt [GeV]

B-in-jet FF, 10 < pi®* < 20 GeVv

0.025 A
—— LO-bjets i
0.020 1 =—- Flavor excitation (FE) |
* FSR g- bb negligible |
0.015 4 "
I
0.010 1 i
i
i
0.005 4
0.000 T
05 0.6 1.0

doldp!etdndzyr [pb/GeV]

v

IS
L

N W

in the vacuum

920000000

000000000 F——F—
(b) t-channel Flavor
Creation

(a) s-channel Flavor
Creation

() Flavor Excitation (d) Gluon Splitting

[PRD 99(2019)072003]

B-in-jet FF, 30 < pi*t < 50 GeV

— LO-bjets H
=== Flavor excitation (FE) ,'
1
1
[

Final-state g —» bb

In Pythia8 simulation:

< HQ from LO hard
collisions.

< HQ from Showers.

e b-jets at sSPHENIX will be
ideal to test b — b-jets.



Timescales of HQ production in the Pythia8+LIDO simulati

Vac-like evolution
Time evolution

Vacuum-like evolution Medium, gs

e LO gg,93 — QQ and Q from initial-state space-like evolution: almost instantaneously
visuable in the medium 7 = 0%.

e Final-state g — QQ,
e Splitting happens with Q > Qo are initialized as Q@ and Q in the medium at 7 = ngHQQ

— independent heavy-quark transport in QGP (needs improvements at the LHC jet energy).

e Heavy flavor production from fragmentation outside the medium
— gluon transport in the medium.



HF & jets in the LIDO partonic transport description

LIDO linearized partonic transport in a background QGP medium, assuming parton densities
(£, x, p) = e=Pu(EX)/T(ex)

p - Ofu(t,x, p) = P°{ Confr +Co(nin)fu }
collisional inelastic

l

e Medium-induced jet parton branching.
* Including approximate implementation of medium-induced Q — Qg,g — QQ

e Jet induced splitting of medium partons & semi-hard recoil.



Inelastic processes in the LIDO transport model

In the CoM frame of the jet & medium partons (E; = Epy ~ VET)
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e E; > 3T, LPM suppression by dynamically suppressing the rate with "2?)’, Te(t) = %

e Ep ~ 3T, medium splitting is still treated as incoherent processes.



Medium-induced light-flavor splitting tested in brick & expanding media.

LIDO simulated induced g — gg spectra in a brick In an expanding medium T 1/7'1/3
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Mass effects in parton splittings

In the vacuum?!

dxdk’ 21 K} + x2M2 x k2 -+ x2M?2
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In the medium, e.g., :X’:’ji‘g’ = 2 P(x)F(k3,x*M?) + asM?>G(k3 , x> M?).
L L

e Massive kinematics and propagator (e.g., dead-cone of @ — Qg). Approximately

2 \?
K2 (02 4+x2 M2

e New terms (1) oc M? (harder to implement in LIDO).

implemented in the transport equation (

1Pythia implements different forms NPB603(2001)297-34, e.g., matrix-element approach for Q — Qg.
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Heavy-flavor channels in LIDO: Q — Qg g — QQ

0-10% central Pb-Pb, /syy =5.02 TeV

e Energy loss from @ — Qg channel.
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Charm quarks from medium excitations?

Another possibility of modifying charm production associated to jets propagating in the QGP:
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The splitting of a medium gluon to ¢ + € under a “hard kick” from the jet parton.

e Produce low-pt /large-angle HF associate to jets.

e A new type of medium excitation that produces charm!

12



Consistent description of jet & (HF)hadron quenching?

v Apply same set of gs(k , ftmea) and other parameters to calculate Rﬂet and REAB
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[ATLAS EPJC78(2018)9 762; CMS PLB782(2018)474, JHEP04(2017)039; ALICE 2202.00815; PHENIX 2203.17058, PRC93(2016)034904 ; STAR PRC99(2019)034908.]

e With the same jet-medium coupling, LIDO overestimates flavor separations of Raa
(coupling fit for hadron/jet suppression is smaller than previously fitted with open HF).

e Low-pt open HF, sensitivity to the precise hadronization processes.
e Intermediate pr, how much HF come from g —HF?
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HF-jet quenching (preliminary) vs latest measurements

LIDO over-predicts the separation of Rz;{et Vs
RISY (ATLAS [2204.13530], pr > 80 GeV).
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LIDO under-estimates the separation of Rf;‘jet Vs RJAe;

(pr < 50 GeV). [ALICE: ALI-PREL-506530, JHEP01(2022)174]
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e Probe energy loss with less impact from hadronization models.

e Need more precise control of g — HF contribution as function of pr.
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Flavor hierarchy of jet quenching at RHIC & LHC
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[PoS(HardProbes2020)060 / 2008.07622, no pt cuts on D, B in this calculation]

e A clear flavor dependent jet quenching, but not all addressed by dead cone effects.

e Again, need to simultaneously fix @, g — HF contribution.
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e This is sensitive to HF fragmentation function.

e Fairly hard HF-in-jet FF At " low” pjﬁt jet.
Would be interesting to push to lower pi* at
sPHENIX.
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Jet cone size dependence at sPHENIX
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e Heavy-flavor jets have already become accessible in heavy-ion collision experiments.
e Probing flavor dependent parton energy loss with less impact from hadronization.

e Opportunity to constrain g, @ — HF contributions in AA.

e HF jets from Pythia8 + LIDO simulations for sSPHENIX
e Expect huge difference between inclusive and b-jet quenching.

e Weak R dependence of b-jet Raa.

e From sPHENIX & LHC experiments:
e sPHENIX b-jet samples are ideal to constrain b — b jets.

e At higher jet pr, g HF jets and search for ¢ from medium excitation.
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Questions?



Associated charm produ
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Jet-HF radial correlation profile [CMS: JHEP05, 006(2018)]

e High p?: energy loss of heavy quarks relative to jet momentum.

e Low p? around high-pr jets, HQ diffusion & extra charm production from jet-induced
medium excitation?
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Jet-medium coupling and the jet transport parameter in LIDO

The jet transport parameter in LIDO contains contributions from both small & large-q
contribution

~ Q2 do do
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_ o ! T is a tunabl ¢
as(q = %W’ Mmed X 1S a tunable parameter.
A2

20



For jet study: a simple model for medium excitation

e Energy-momentum deposition to soft sector:
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d
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e An ideal-hydro response (no transverse flow)

de  8p°+ k' -8p/cs dp  3(cs0p® + k' - Sp)K
dQ 47 TdQ 4 ’

ReqUires Rresponse > Fenergy loss-

e Freeze-out to massless particles under a radial transverse flow
v| = corrects the momentum density in 7-¢ plane.
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Model calibration w/ hadron & jet Ra4 in

central Au-Au & Pb-Pb

e 0.77T < fimeq < 4w T: goes into the
coupling in mp, dogg, dogq, and radiation.

g52(kl-7 T) _ 4j Infl max{ki’“’fned}
47 Bo /\2
e 0.5 < Qg < 2.0 GeV: initialization scales,
vary independently at RHIC and LHC.

e 0.15 < Tf < 0.17 GeV: “confinement”
temperature for jet quenching.
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Individual parameters, note Q(I;HC > Q?HIC.

Consistent with Ap% in fast-expanding medium
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Systems
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Experimental data used in the model calibration

7% in 0-10% Au-Au@200 GeV [PHENIX PRC 87(2013)034911 ]

h* in 0-10% Pb-Pb@5.02 TeV [CMS JHEP04(2017)039).

D in 0-10% Pb-Pb®@5.02 TeV [CMS PLB287(2018)474-496].

e R = 0.4 charged jets in 0-10% Au-Au®©200 GeV [STAR PRC102(2020)054913].

R = 0.4 jets in 0-10% Pb-Pb®5.02 TeV [ALICE PRC101(2020)034911; ATLAS PLB
790(2019)108-128].
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Knowledge in

jet fragmentation function
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hadron-in-jet data [DP Anderle et al PRD96(2017)034028].
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Frame Title

For example, for the channel g — Q + Q
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- - - mation (4.9)-(4.12). The two panels show different represer

luated in the saddle point approxi-

ions of the same calculation.
[Opacity N =1 from SCET, Kang, Ringer, Vitev [Multiple-soft region from the BDMPS-Z formula,
JHEP1703(2017)146] Attems et al, 2203.11241]
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