Heavy-flavor Jet in QGP from Partonic Transport

RBRC Workshop: Predictions for sPHENIX Brookhaven National Laboratory July 20–22, 2022

Weiyao Ke, Los Alamos National Laboratory Jul 20, 2022 Experiments at the LHC and sPHENIX make possible the study of HF-tagged jets in AA

Projected high-accuracy nuclear modification of $h^{\pm}/D/B$ and jets/*b*-jets.

1

Charm & bottom at not too large p_T

- Collisional processes.
- Suppressed radiations from not only dead-cone effects, but also kinematics.
- Hadronization via fragmentation and coalescence.

Need all ingredients to study the modifications.

Modifications of heavy-quark jets:

- The same partonic interactions.
- Less sensitive to hadronization model.
- More sensitive to Q vs $g \rightarrow HF$.
- Medium excitations of a non-relativistic moving particle.

- Hadrons: R_{AA} , v_n of h^{\pm} , D, $B(\checkmark)$.
- Light and heavy-jets:
 - R_{AA} (\checkmark) and $v_n \Rightarrow$ use w/ hadron obs to study partonic transport & hadronization.
 - Radius dependence \Rightarrow how energy is recovered around massless/massive jet parton.
- Hadron-in-jet fragmentation / HF-jet correlation
 - $D_{h,HF}(z, p_T)$ to probe the medium-modified fragmentation.
 - HQ diffusion with jet reference.

• Pythia8 hard processes + shower down to scale Q_0 .

- Partonic transport [LIDO: PRC100(2019)064911, JHEP05(2021)041] for $Q < Q_0 \& T > T_f$.
- Vacuum shower + fragmentation (Pythia8) for partons escaping the QGP.

HQ jets from event generation in the vacuum

In Pythia8 simulation:

HQ from LO hard collisions.

 \triangleleft HQ from Showers.

b-jets at sPHENIX will be ideal to test *b* → *b*-jets.

Timescales of HQ production in the Pythia8+LIDO simulation

- LO $gg, q\bar{q} \rightarrow Q\bar{Q}$ and Q from initial-state space-like evolution: almost instantaneously visuable in the medium $\tau = 0^+$.
- Final-state g
 ightarrow Q ar Q,
 - Splitting happens with $Q>Q_0$ are initialized as Q and \bar{Q} in the medium at $au= au_f^{g o Q\bar{Q}}$
 - \rightarrow independent heavy-quark transport in QGP (needs improvements at the LHC jet energy).
 - Heavy flavor production from fragmentation outside the medium
 - \rightarrow gluon transport in the medium.

LIDO linearized partonic transport in a background QGP medium, assuming parton densities $f_s(t, x, p) = e^{-p \cdot u(t,x)/T(t,x)}$.

$$p \cdot \partial f_H(t, x, p) = p^0 \left\{ \underbrace{\mathcal{C}_{nn} f_H}_{collisional} + \underbrace{\mathcal{C}_{n(n+1)} f_H}_{inelastic} \right\}$$

- Medium-induced jet parton branching.
 - \star Including approximate implementation of medium-induced $Q o Qg, g o Qar{Q}$
- Jet induced splitting of medium partons & semi-hard recoil.

Inelastic processes in the LIDO transport model

In the CoM frame of the jet & medium partons $(E_J = E_M \sim \sqrt{ET})$

$$\int_{\mathbf{k},\mathbf{q},p'} \frac{d\sigma_{23}}{dzd^2\mathbf{k}d^2\mathbf{q}} f_{s}(p') \left[f_{H}(\frac{x}{z},\mathbf{p}+\mathbf{k}-\mathbf{q}) - f_{H}(x,\mathbf{p}) \right] \frac{dz}{z} \Theta(y_{\rm cm}) + \frac{d\sigma_{23}}{dzd^2\mathbf{k}d^2\mathbf{q}} f_{H}(p) f_{s}(x/z,\mathbf{p}'+\mathbf{k}_{\perp}+\mathbf{q}_{\perp}) \frac{dz}{z} \Theta(-y_{\rm cm})$$

medium parton ($y_{cm<0}$) splittings

$qq \rightarrow qaa$ $qq \rightarrow qqq$ qg → qqq̃ $qg \rightarrow qc\bar{c}$ $qg \rightarrow qb\bar{b}$ $qq \rightarrow qqq$ $1/\sigma \cdot d\sigma/d$ gg → qgã $gg \rightarrow cg\bar{c}$ $gg \rightarrow bg\bar{b}$ $qq \rightarrow qqq$ $gq \rightarrow qq\bar{q}$ $gq \rightarrow cq\bar{c}$ 1/a · da/dy $gq \rightarrow bq\bar{b}$ T = 0.3 GeV $bq \rightarrow bqq$ $cq \rightarrow cqq$ $cq \rightarrow cqq$ $bq \rightarrow bqq$.la - da/dy $\hat{s}_{\mu} = 10 \text{ GeV}$

Ya.c.b.a

Yq,c,b,g

Yq,c,b,g

 \triangledown 17 incoherent 2 \rightarrow 3 cross-sections with *t*-channel gluon exchange.

Back to QGP frame

• $E_J \gg 3T$, LPM suppression by dynamically suppressing the rate with $\frac{\lambda_{mfp}}{\tau_f(t)}$, $\tau_f(t) = \frac{2x(1-x)E}{k^2_{-}(t)+m^2_{-rc}}$

Ya.c.b.a

Ya.c.b.a

• $E_M \sim 3T$, medium splitting is still treated as incoherent processes.

Theory references from the method introduced in [S.

Caron-Huot, C. Gale PRC82(2010)064902 modified collinear splitting, resumming multiple collisions.]

$$\frac{d\Gamma_{bc}^{a}(t)}{dk} \equiv \frac{P_{bc}^{a(0)}(x)}{\pi p} \times \operatorname{Re} \int_{0}^{t} dt_{1} \int_{\mathbf{q},\mathbf{p}} \frac{i\mathbf{q}\cdot\mathbf{p}}{\delta E(\mathbf{q})} \mathcal{C}(t) K(t,\mathbf{q};t_{1},\mathbf{p}).$$

In an expanding medium
$$T \propto 1/ au^{1/3}$$

Theory points from same method but with $T = T(\tau)$.

In the vacuum¹

$$\frac{dN_{QQ}}{dxdk_{\perp}^{2}} = \frac{\alpha_{s}C_{F}}{2\pi} \frac{1}{k_{\perp}^{2} + x^{2}M^{2}} \left[\frac{1 + (1 - x)^{2}}{x} - \frac{2x(1 - x)M^{2}}{k_{\perp}^{2} + x^{2}M^{2}} \right], \quad \frac{dN_{gQ}}{dxdk_{\perp}^{2}} = \frac{\alpha_{s}T_{R}}{2\pi} \frac{1}{k_{\perp}^{2} + M^{2}} \left[x^{2} + (1 - x)^{2} + \frac{2x(1 - x)M^{2}}{k_{\perp}^{2} + M^{2}} \right]$$

In the medium, e.g., $\frac{dN_{QQ}}{dxd\mathbf{k}_{\perp}^2} = \frac{\alpha_s}{\mathbf{k}_{\perp}^2} P(x)F(\mathbf{k}_{\perp}^2, x^2M^2) + \alpha_s M^2 G(\mathbf{k}_{\perp}^2, x^2M^2).$

- Massive kinematics and propagator (e.g., dead-cone of $Q \to Qg$). Approximately implemented in the transport equation $\left(\frac{\mathbf{k}_{\perp}^2(t)}{\mathbf{k}_{\perp}^2(t)^2 + x^2 M^2}\right)^2$.
- New terms ($\uparrow\downarrow)\propto M^2$ (harder to implement in LIDO).

¹Pythia implements different forms NPB603(2001)297–34, e.g., matrix-element approach for Q
ightarrow Qg.

 $g \rightarrow q\bar{q}, g \rightarrow c\bar{c}, g \rightarrow bb$

- Energy loss from $Q \rightarrow Qg$ channel.
- Term $\propto x^3 M^2$ is <u>not</u> included. But they are less important for energy loss.

- Simulation of medium-induced jet $g \rightarrow Q\bar{Q}$ in LIDO \triangledown
- Theory reference (dashed lines)

$$\begin{split} &\frac{d\Gamma_{bc}^{a}(t)}{dk} \equiv \frac{P_{bc}^{a(0)}(x)}{\pi p} \times \operatorname{Re} \int_{0}^{t} dt_{1} \int_{\mathbf{q},\mathbf{p}} \frac{i\mathbf{q}\cdot\mathbf{p}}{\delta E(\mathbf{q})} \mathcal{C}(t)K(t,\mathbf{q};t_{1},\mathbf{p}). \\ & \text{e.g.,} \ \frac{(x^{2}+(1-x)^{2})\mathbf{q}\cdot\mathbf{p}}{\delta E(\mathbf{q},m)} + \frac{m^{2}}{\delta E(\mathbf{q},m)} \end{split}$$

Another possibility of modifying charm production associated to jets propagating in the QGP:

The splitting of a medium gluon to $c + \bar{c}$ under a "hard kick" from the jet parton.

- Produce low- p_T /large-angle HF associate to jets.
- A new type of medium excitation that produces charm!

Consistent description of jet & (HF)hadron quenching?

 \triangledown Apply same set of $g_s(\mathbf{k}_{\perp}, \mu_{\mathrm{med}})$ and other parameters to calculate $R_{AA}^{\mathrm{h, jet}}$ and $R_{AA}^{D,B}$

ATLAS EPJC78(2018)9 762; CMS PLB782(2018)474, JHEP04(2017)039; ALICE 2202.00815; PHENIX 2203.17058, PRC93(2016)034904 ; STAR PRC99(2019)034908.]

- With the same jet-medium coupling, LIDO overestimates flavor separations of *R*_{AA} (coupling fit for hadron/jet suppression is smaller than previously fitted with open HF).
- Low- p_T open HF, sensitivity to the precise hadronization processes.
- Intermediate p_T , how much HF come from $g \rightarrow$ HF?

LIDO over-predicts the separation of $R_{AA}^{b\text{-jet}}$ vs R_{AA}^{jet} (ATLAS [2204.13530], $p_T > 80$ GeV).

LIDO under-estimates the separation of $R_{AA}^{D-\text{jet}}$ vs R_{AA}^{jet} ($p_T < 50$ GeV). [ALICE: ALI-PREL-506530, JHEP01(2022)174]

- Probe energy loss with less impact from hadronization models.
- Need more precise control of $g \rightarrow HF$ contribution as function of p_T .

Flavor hierarchy of jet quenching at RHIC & LHC

[PoS(HardProbes2020)060 / 2008.07622, no p_T cuts on D, B in this calculation]

- A clear flavor dependent jet quenching, but not all addressed by dead cone effects.
- Again, need to simultaneously fix $Q, g \rightarrow \mathsf{HF}$ contribution.

HF-in-jet fragmentation function (central Pb-Pb@5.02 TeV)

- This is sensitive to HF fragmentation function.
- Fairly hard HF-in-jet FF At "low" p_T^{jet} jet. Would be interesting to push to lower p_T^{jet} at sPHENIX.

Difference of induced charm production (from both jet and medium splittings).

- This is sensitive to HF fragmentation function.
- Fairly hard HF-in-jet FF At "low" p_T^{jet} jet. Would be interesting to push to lower p_T^{jet} at sPHENIX.
- At high- p_T^{jet} , $g \rightarrow \text{HF}$ leads to a softened FF.
- Induced charm production impacts low-z.

Jet cone size dependence at sPHENIX

• Inclusive-jet R_{AA} : weak R dependence.

- *b*-jet R_{AA} ($b \rightarrow b$ jets are shown), almost independent of 0.2 < R < 0.6 from simulations.
- Looking forward to precise *R*-dependence of inclusive vs *b*-jets from sPHENIX.

Summary

- Heavy-flavor jets have already become accessible in heavy-ion collision experiments.
 - Probing flavor dependent parton energy loss with less impact from hadronization.
 - Opportunity to constrain $g, Q \rightarrow HF$ contributions in AA.
- HF jets from Pythia8 + LIDO simulations for sPHENIX
 - Expect huge difference between inclusive and *b*-jet quenching.
 - Weak R dependence of b-jet R_{AA} .
- From sPHENIX & LHC experiments:
 - sPHENIX *b*-jet samples are ideal to constrain $b \rightarrow b$ jets.
 - At higher jet p_T , g HF jets and search for $c\bar{c}$ from medium excitation.

Questions?

Associated charm production around the jet

Jet-HF radial correlation profile [CMS: JHEP05, 006(2018)]

- High p_T^D : energy loss of heavy quarks relative to jet momentum.
- Low p^D_T around high-p_T jets, HQ diffusion & extra charm production from jet-induced medium excitation?

The jet transport parameter in LIDO contains contributions from both small & large-q contribution

$$\hat{q}_{F}(T,p) = \underbrace{m_{D}^{2}C_{F}T\alpha_{s}(\mu_{\mathrm{med}})\ln\frac{Q_{c}^{2}}{m_{D}^{2}}}_{\hat{q}_{s}=\kappa_{s,xx}+\kappa_{s,yy}} + \underbrace{\int_{p'}f_{s}(p')\left\{2(N_{c}^{2}-1)\frac{d\sigma_{qg}}{d^{2}\mathbf{q}_{\perp}} + 4N_{f}N_{c}\frac{d\sigma_{qq}}{d^{2}\mathbf{q}_{\perp}}\right\}\Theta(\mathbf{q}_{\perp}^{2}-Q_{c}^{2})\mathbf{q}_{\perp}^{2}d^{2}\mathbf{q}_{\perp}}_{\alpha_{s}=\alpha_{s}(\max\{\mathbf{q}_{\perp}^{2},\mu_{\mathrm{med}}^{2}\})}$$

The running coupling in the medium is assumed to be

$$\alpha_s(q) = \frac{4\pi}{\beta_0} \frac{1}{\ln \frac{\max\{\mu_{\rm med}^2, q^2\}}{\Lambda^2}}, \ \ \mu_{\rm med} \propto T \text{ is a tunable parameter.}$$

For jet study: a simple model for medium excitation

• Energy-momentum deposition to soft sector:

$$\frac{d\delta p^{\mu}}{dt}(t,x) = \int_{\mathbf{p}} \Theta(\mathbf{p} \cdot \mathbf{u} < E_{\min}) p^{\mu} \frac{d}{dt} f_{H}(t,x,p)$$

• An ideal-hydro response (no transverse flow)

$$\frac{de}{d\Omega_{k'}} = \frac{\delta p^0 + \hat{k}' \cdot \delta \vec{p}/c_s}{4\pi}, \quad \frac{d\vec{p}}{d\Omega_{k'}} = \frac{3(c_s \delta p^0 + \hat{k}' \cdot \delta \vec{p})\hat{k'}}{4\pi}$$

Requires $R_{\text{response}} \gg r_{\text{energy loss}}$.

• Freeze-out to massless particles under a radial transverse flow $v_{\perp} \Rightarrow$ corrects the momentum density in η - ϕ plane.

$$\begin{array}{lcl} \frac{d\Delta p_T}{d\phi d\eta} & = & \int \frac{3}{4\pi} \frac{\frac{4}{3}\sigma u_{\mu} - \hat{p}_{\mu}}{\sigma^4} \delta p^{\mu}(\hat{k}) \frac{d\Omega_{\hat{k}}}{4\pi} \\ \sigma & = & \gamma_{\perp} \left[\cosh(\eta - \eta_s - \eta_{\hat{k}}) - v_{\perp}\cos(\phi - \phi_{\hat{k}})\right] \end{array}$$

• $0.7\pi T < \mu_{med} < 4\pi T$: goes into the coupling in $m_D, d\sigma_{qg}, d\sigma_{qq}$, and radiation.

$$\frac{g_s^2(\mathbf{k}_{\perp}, \mathcal{T})}{4\pi} = \frac{4\pi}{\beta_0} \ln^{-1} \left[\frac{\max\{\mathbf{k}_{\perp}^2, \mu_{\rm med}^2\}}{\Lambda^2} \right]$$

- 0.5 < Q₀ < 2.0 GeV: initialization scales, vary **independently** at RHIC and LHC.
- 0.15 < T_f < 0.17 GeV: "confinement" temperature for jet quenching.

Individual parameters, note $Q_0^{\rm LHC} > Q_0^{\rm RHIC}$. Consistent with Δp_T^2 in fast-expanding medium

Systems	AA 5 TeV		AA 0.2 TeV
	0-5%	40-50%	0-5%
$5t_0T_0^3$ [GeV ²]	1.1	0.55	0.46

- π⁰ in 0-10% Au-Au@200 GeV [PHENIX PRC 87(2013)034911.]
- *h*[±] in 0-10% Pb-Pb@5.02 TeV [CMS JHEP04(2017)039].
- *D* in 0-10% Pb-Pb@5.02 TeV [CMS PLB287(2018)474-496].
- R = 0.4 charged jets in 0-10% Au-Au@200 GeV [STAR PRC102(2020)054913].
- *R* = 0.4 jets in 0-10% Pb-Pb@5.02 TeV [ALICE PRC101(2020)034911; ATLAS PLB 790(2019)108-128].

- The HF-in-jet FF is a mixture of $Q \rightarrow$ HF, $g \rightarrow$ HF, $q \rightarrow$ HF, weighted by the partonic cross-section.
- ⊲ One can extract $c, b, g, q \rightarrow D$ FF in the vacuum, using the hadron-in-jet data [DP Anderle et al PRD96(2017)034028].
- Can we use similar information AA to extract in-medium $Q, g, q \rightarrow D, B$ fragmentation functions?

. For example, for the channel g o Q + ar Q

$$\begin{split} & \left(\frac{4N^{ood}}{4k^{2}k_{1}^{2}}\right)_{\nu=Q_{0}^{2}} = \frac{2\pi^{2}}{2\pi} \int d\lambda \cdot \frac{1}{A_{1}(\gamma)} \int d^{2}q_{\perp} \frac{d}{dq_{1}} \frac{dq_{2}}{dq_{1}} \left\{ \left(x^{2} + (1-x)^{2}\right) \right. \\ & \times \left[2\frac{B_{\perp}}{B_{\perp}^{2} + \nu^{2}} \left(\frac{B_{\perp}}{B_{\perp}^{2} + \nu^{2}} - \frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}}\right) \left(1 - \cos\left((\Omega_{1} - \Omega_{2})\Delta z\right)\right) \right. \\ & + 2\frac{C_{\perp}}{Q_{\perp}^{2} + \nu^{2}} \left(\frac{C_{\perp}}{Q_{\perp}^{2} + \nu^{2}} - \frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}}\right) \left(1 - \cos\left((\Omega_{1} - \Omega_{3})\Delta z\right)\right) + \frac{1}{N_{\perp}^{2} - 1} \left(2\frac{B_{\perp}}{B_{\perp}^{2} + \nu^{2}} - \frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}}\right) \\ & \times \left(\frac{C_{\perp}}{C_{\perp}^{2} + \nu^{2}} - \frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}}\right) \left(1 - \cos\left((\Omega_{1} - \Omega_{2})\Delta z\right)\right) + 2\frac{C_{\perp}}{C_{\perp}^{2} + \nu^{2}} \left(\frac{B_{\perp}}{B_{\perp}^{2} + \nu^{2}} - \frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}}\right) \\ & \times \left(1 - \cos((\Omega_{1} - \Omega_{3})\Delta z)\right) - 2\frac{C_{\perp}}{D_{\perp}^{2} + \nu^{2}} \frac{B_{\perp}}{B_{\perp}^{2} + \nu^{2}} \left(1 - \cos((\Omega_{2} - \Omega_{3})\Delta z)\right) \\ & + 2\frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}} \left(\frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}} - \frac{D_{\perp}}{D_{\perp}^{2} + \nu^{2}}\right) \left(1 - \cos(\Omega_{1}\Delta z)\right) \\ & + 2\frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}} \left(\frac{A_{\perp}}{B_{\perp}^{2} + \nu^{2}} - \cos(\Omega_{1}\Delta z)\right) \right) \\ & + m^{2} \left[2\frac{A_{\perp}}{B_{\perp}^{2} + \nu^{2}} \left(\frac{A_{\perp}}{B_{\perp}^{2} + \nu^{2}} - \frac{A_{\perp}}{A_{\perp}^{2} + \nu^{2}}\right) \left(1 - \cos((\Omega_{1} - \Omega_{2})\Delta z)\right) + \ldots \right] \right\}, \quad (2.52) \end{split}$$

$$\label{eq:constraint} \begin{split} & [\text{Opacity } \textit{N} = 1 \text{ from } \textit{SCET}_{\text{G}}, \text{ Kang, Ringer, Vitev} \\ & \text{JHEP1703(2017)146}] \end{split}$$

Figure 6. The medium-modified $g \rightarrow c\bar{c}$ splitting function evaluated in the saddle point approximation (4.9)-(4.12). The two panels show different representations of the same calculation.

[Multiple-soft region from the BDMPS-Z formula, Attems et al, 2203.11241]