Jet Drift in Event-by-Event Heavy-Ion Collisions

Matthew D. Sievert

RBRC Workshop: Predictions for sPHENIX

7/21/2022

M. Sievert

Jet Drift in Event-by-Event HIC

1/18

Key Papers for This Talk

Theoretical Calculation: Andrey Sadofyev, MDS, Ivan Vitev, Phys. Rev. D104 (2021)

Ab Initio Coupling of Jets to Collective Flow

in the Opacity Expansion Approach

<u>Model Phenomenology:</u> Logan Antiporda, Joseph Bahder, Hasan Rahman, **MDS**, Phys. Rev. **D105** (2022) Jet Drift and Collective Flow

in Heavy-Ion Collisions

Hydro Phenomenology: [oseph Bahder, Logan Antiporda, Jorge Marquez Chavez, **MDS**, [in preparation]

(In Preparation)

18

Jets in Vacuum: a Microcosm of QCD

- Basic jet production: hard parton-parton scattering at high virtuality Q^2
- **Cascade of radiation** falling in virtuality down from Q^2 to the **hadronization scale** Λ^2
- Jets and substructure: **radiative QCD evolution** from perturbative to nonperturbative

M. Sievert

Jets in Medium: Multi-Scale Probes

- At high *p_T*, jets lose energy primarily by radiating a shower of soft gluons
 - In vacuum: Sudakov factor
 - In medium: LPM effect

- The **interference pattern** of the shower carries information about the **medium**
 - > **Position-space** information: $\rho(\vec{x})$
 - > Momentum space information: $v(\vec{q})$

Induced Radiation + accompanying p_T broadening

Landau, Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz 92 (1953)

Migdal, Phys. Rev. 103 (1956)

M. Sievert

Jets as Interferometers for Medium-Induced Radiation

Edge phases of the emission region

Phase slip from scattering

5 / 18

M. Sievert

Canonical Signatures of Medium Modification

(GeV/c) **ALICE Preliminary** TT(5,7) reference Uncorrected TT(20,50) signal 0-10 % Pb-Pb Δ_{recoil} [TT(20,50) - TT(5,7)] $d\Delta \varphi dp^{reco,ch}_{T,jet}$ s_{NN} = 5.02 TeV charged jets, anti-k_ $R = 0.2, |\eta| < 0.7$ Np $30 < p_{\text{Tint}}^{\text{reco,ch}} < 40 \text{ GeV/c}$ dŋ_{jet} N_{trig} ____ ALI-PREL-353023 1.6 1.8 2 2.2 2.4 2.6 2.8 3 $\Delta \varphi$

Energy Loss

 \succ Jet quenching, γ +jet imbalance ...

***** Transverse Momentum Broadening

> Dijet / γ +jet acoplanarities ...

6 / 18

M. Sievert

<u>Asymmetric</u> Measures of Medium Modification

Pb+Pb 0-10 %

x (fm)

• Linearized Boltzmann Transport calculation of of jet asymmetries induced by gradients

$$A_{N}^{\vec{n}} = \frac{\int d^{3}r d^{3}k f_{a}(\vec{k},\vec{r}) \operatorname{Sign}(\vec{k}\cdot\vec{n})}{\int d^{3}r d^{3}k f_{a}(\vec{k},\vec{r}) \operatorname{He, Pang, Wang}_{Phys.Rev.Lett. \, \mathbf{125} \, (2020)} \mathbf{F}_{-\mathbf{5}} \begin{bmatrix} \mathbf{5} \\ \mathbf{0} \\ \mathbf{0}$$

Jet Drift in Event-by-Event HIC

7 / 18

5

Velocity Corrections in the Opacity Expansion

$$g A_{\text{ext}}^{\mu a}(q) = \sum_{i} e^{iq \cdot x_i} t_i^a \ u^{\mu}(\vec{x}_i) \ v(\vec{x}_i, \vec{q}) \ (2\pi) \delta\left(q^0 - \vec{u}(\vec{x}_i) \cdot \vec{q}\right)$$

Sadofyev, MDS, Vitev, Phys. Rev. D104 (2021)

Fully relativistic velocity Velocity-dependent potential

$$v(\vec{x}_i, \vec{q}) = \frac{-g^2}{\vec{q}^2 + \mu^2 - (\vec{u}(\vec{x}_i) \cdot \vec{q})^2 - i\epsilon}$$

$$x_i \quad a_i(q)$$

$$q$$

$$p_{s,i} \quad p_{s,i} \quad q$$

- GW: Target masses assumed to be heavy (neglects medium recoil)
- $\mathbf{v} \mid \frac{\mu^2}{g^2} \stackrel{0.6}{0.4} \qquad u = 1$ $\begin{array}{c} & \theta = \pi/2 \\ & \theta = \pi/4 \\ & \theta = 0, \pi \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.5 \\ & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & 3.0 \\ & \mathbf{q}/\mu \end{array}$

8

18

- Keep sub-eikonal, velocity-dependent corrections to the Gyulassy-Wang potential Gyulassy, Wang, Nucl. Phys. B420 (1994)
 - Enhanced collinear scattering with the flow

Correlated collisional energy transfer

M. Sievert

 $p_s^{\mu} = \gamma M(1, \vec{u})^{\mu}$

Jet Drift: Skewed Acoplanarities

M. Sievert

Jet Drift in Event-by-Event HIC

9/18

Acoplanarities and Moments

Assuming: Gyulassy-Wang potential, initial "pencil jet," LO initial distribution

Jet drift: sub-eikonal, antisymmetric

$$\frac{dN^{(1)}}{d^2 p_T} = \frac{1}{\pi} \int \frac{dt}{\lambda(t)} \frac{\mu^2(t)}{(p_T^2 + \mu^2(t))^2} \left[1 + \frac{\vec{u}_T(t) \cdot \vec{p}_T}{\left(1 - u_{\parallel}(t)\right) E} \left(\frac{6p_T^2 + 4\mu^2(t)}{p_T^2 + \mu^2(t)} \right) \right]$$

If the orientation of the event plane is fixed (EPD), can measure the net deflection of jets relative to the event plane:
Antiporda, Bahder, Rahman, MDS,

Phys. Rev. D105 (2022)

$$\left\langle \vec{p}_{\perp} \, p_{\perp}^k \right\rangle = \frac{I(k)}{E} \, \hat{e}_{\perp} \, \int \frac{dt}{\lambda(t)} \, \frac{u_{\perp}(t)}{1 - u_{\parallel}(t)} \, \mu^{k+2}(t)$$

18

10 /

Otherwise, look for event-by-event correlations with event plane

M. Sievert

Simplest Case: The Constant Flowing Slab

- Take all medium properties to be constant ("brick" / "slab")
- Drift controlled by u_{\perp} , u_{\parallel} : detailed **tomographic information**
- Flow direction acts as an **attractor for jet trajectories**

18

M. Sievert

Gaussian Toy Model (Optical Glauber)

Antiporda, Bahder, Rahman, MDS,

- Assume Gaussian temperature profile;
 Shape fluctuates with impact parameter;
 Velocities proportional to temperature gradients
- Elliptic flow manifests cos 2θ acoplanarity modulation
- > **Positive correlation** with **ellipticity** ε_2 (centrality)
- > Robust event-plane correlation despite fluctuations

Jet Drift in Event-by-Event HIC

12 / 18

2+1D Viscous Hydrodynamics

• Hydro backgrounds generated by Duke QCD event generator

github.com/Duke-QCD/hic-eventgen

18

13

- ➢ 2014 HotQCD lattice EOS
 Bazar
 - Bazavov et al., Phys. Rev. D90 (2014)
- Jets generated by binary collision sampling or by hand

M. Sievert

An Example: Radial Jet in a Central Event at RHIC

- Jet receives **transverse kicks** from passing **near hot spots**
- No systematic drift in either direction

M. Sievert

• Sizeable net deflections ~several degrees for ~20 GeV jets

An Example: Tangent Jet in a Central Event at the LHC

- **Early** CW kick from **hot spot**; **late** systematic CCW drift from **radial flow**
- Competition between falling temperature and rising velocities

M. Sievert

• **Tangent jets** which "surf the edge" of the plasma **benefit from both factors**

A Surprise...

• Jets spend **large amounts of time** in the **HRG phase** $T < T_c \sim 200 \text{ MeV}$ and in the "**unhydrodynamic" phase** $T < T_{FO} \sim 150 \text{ MeV}$

Comparable lifetime **ratios** at RHIC and LHC!

<u>16/18</u>

M. Sievert

- For ~20GeV jets at RHIC, we observe sizeable deflections of up to ~6° from the plasma phase alone, T > 200 MeV
 - Even larger contributions if one extrapolates down into the HRG or "unhydrodynamic" phases (where the physics should greatly change)
- The jet drift effect appears to be **largest in central collisions** and **decreases with increasing centrality**
 - > **Opposite** to what was observed for the Gaussian toy model
 - Competing roles of temperature and ellipticity
 - Disentangle with selection cuts?

Outlook: Much More to Come!

- <u>Beginning a large-scale statistical analysis:</u>
 - > Initial acoplanarities from Pythia
 - Use of selection cuts (e.g., event-shape engineering) to maximize the jet drift signal and to disentangle competing effects (temperature vs. geometry)
 - > Comparison of observables: γ +jet vs dijets, etc.
- <u>Further theoretical developments:</u>
 - Gradient treatment on the same footing
 - Fully reconstructed jets
- <u>The Future....</u> **JETSCAPE ?**

Barata, Sadofyev, Salgado, Phys.Rev. **D105** (2022) Andres, Dominguez, Sadofyev, Salgado, arXiv: 2207.07141

M. Sievert