Recoil free jet observables at sPHENIX

Yang-Ting Chien

Predictions for sPHENIX, BNL July 21st, 2022

Phys. Lett. B 815 (2021) 136124 (2005.12279), 2205.05104 ; Phys. Rev. D 105 (2022) 5, L051502

In collaboration with Rudi Rahn, Solange Schrijnder van Velzen, Ding Yu Shao, Wouter J. Waalewijn, Bin Wu, And also Abhay Deshpande, Mriganka Mouli Mondal, George Sterman, Weibin Zhang

Center for Frontiers in Nuclear Science

1

Recoil free jet observables at sPHENIX

Yang-Ting Chien

In collaboration with Rudi Rahn, Solange Schrijnder van Velzen, Ding Yu Shao, Wouter J. Waalewijn, Bin Wu, And also Abhay Deshpande, Mriganka Mouli Mondal, George Sterman, Weibin Zhang

Center for Frontiers in Nuclear Science

Outline

- How can we do precision hard probes (or jet physics) at sPHENIX?
 - Meaning: precise measurement and sensitivity to distinct phase spaces
- Underlying events "recoil" jet observables significantly
- Recoil-free jet observables to precisely benchmark medium modifications
 - Recoil-free photon-jet or dijet angular decorrelation
 - Polarized proton beams
 - Leading and next-to-leading hadron charge correlation

Challenges from correlated underlying events

• Are there observables which are not affected by such subtractions? Or, equivalently, don't require subtractions?

Recoil sensitive observable

- If an observable depends on soft-radiation, it is recoil-sensitive.
 - Standard jet reconstruction is recoil-sensitive
 - Inclusion of some soft radiation p_t^{soft} (due to UE fluctuations) at a typical angular scale $\mathcal{O}(R)$ will change the jet direction by an amount $R \times p_t^{\text{soft}}/p_t^{\text{jet}}$
 - Medium transverse momentum transfer p_{\perp} will deflect the jet direction by an

Boson-jet azimuthal decorrelation

Definition: $\Delta \phi \equiv |\phi_V - \phi_J|$ ($\delta \phi \equiv \pi - \Delta \phi$): a stringent test of QCD in pp

Precise predictions rely on

- Fixed-order calculations
 NLO, NNLO, · · ·
- 2. Resummation of $\ln \delta \phi$
 - Parton branching method
 - ▶ Pythia, Herwig,…
 - TMD factorization
 - ► SCET
- Validity of factorziation
 Is it broken by Glauber modes?

Bin Wu, presented at DESY

Recoil free observable SJA: standard jet axis Sensitive to in-jet 2 out-of. jet radiation distinction WTA: winner-take-all aris or in general recoil free axis * Trace the most dominant (winner) energy flow * WTA axis is actually sensitive to all soft emissions and collinear splittings

Hadronization, multi-parton interaction and charge tracks

Leading and next-to-leading hadrons recoil-free

H₁: leading hadron H₂: next-to-leading hadron $P = P^{H_1} + P^{H_2}$ $P = P^{H_1} + P^{H_2}$ $Z = P^{H_1}/P$ $P_{H_1H_2}$ H_2 H_2 H

- Focus exclusively on
 - collinear regions around dominant energy flows: jets
 - energetic hadrons since soft hadrons are abundant and hard to disentangle their origins

Hadronization of most energetic partons

Charge correlation

- Leading dihadron correlation: conditional probability of observing H_2 in the presence of H_1
- Comparing the cross sections of h_1h_2 and $h_1\overline{h_2}$ to quantify the flavor constraints
- Evolution of r_c w.r.t. kinematic phase space X

We focus on two novelties: D Leading dihadons exclusively Dependence on X: Z. KI, Tform,...

Monte Carlo samples

• 18 GeV electron beam + 275 GeV proton beam
• PYTHIA 6.428 and Herwig 7.1.5
• Impose
$$Q^2 > 50$$
 GeV² so that we have higher p_T jets
• 10 million events
• Jets: $p_T^{\text{particle}} > 0.2$ GeV, $-1.5 < \eta < 3.5$, anti- $k_t R = 1.0$, $p_T^{\text{jet}} > 5$ GeV
Yelatively high PT at EIC energy dominated by valence U and d quarks

Leading dihadron kinematics

Leading dihadron formation time

$$t_{\text{form}} = z(1-z)p/k_{\perp}^{2}$$

$$\binom{(1-z)p}{k_{\perp}} \cdot \binom{P}{k_{\perp}}, \text{Lorentz}$$
proper time boost

- Formation time peaks around 1 to 10 fm
- $|r_c|$ maximizes at large formation time
- Significant difference between PYTHIA and Herwig

more local

14

Leading dihadron relative k_{\perp}

- $|r_c|$ maximizes at small k_{\perp} and decreases as k_{\perp} increases on the scale of 1-2 GeV
- Suggesting strong nonperturbative correlation at play

Flavor tagging and πK correlation $*\pi K$ separation required.

Flavor constraints

Medium modification of charge correlation

Credit : Weibin Zhang

Summary

- Recoil free photon-jet and di-jet angular decorrelation might be useful to more quantitatively pin down the idea of jet broadening in heavy ion collision: yes, or no?
 - It scans through all the parton showers so might be maximally sensitive to medium effect
- Leading dihadron charge correlation, on the other hand, focus on hadronization, the latest stage of jet formation
 - Medium modification: yes, or no?