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QCD Jets

❖ Complete picture of jet evolution in HIC is a complex task

❖ Different formalisms to treat this evolution: CoLBT, MARTINI, MATTER+LBT, JEWELS… 

❖ We focus mainly on energy loss and equilibration of hard partons in the medium
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Our Focus

❖ Main focus: Hard Parton traversing the medium

❖ Understand: energy cascade, out-of-cone energy loss, medium response and full thermalization 
of the initial hard parton => Important for low energy jets at RHIC (sPHENIX)
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Effective Kinetic description
❖ Based on an effective kinetic theory at leading order:

❖ We consider high energetic partons as linearized fluctuation over static background equilibrium
                                                         
❖ Define energy distribution: 

                                            

                -  is the parton momentum fraction

                 -  : Polar angle of the momentum 
❖ Exact conservation of energy, momentum and valence charge  allows to study evolution from 

  to  including thermalization of the hard partons

pμ∂μ fi( ⃗x , ⃗p , t) = C[{fi}],

f(p, t) = neq(p; T) + δfjet(p, t),

Da(x, θ, t) ≡ x
dNa

dxd cos θ
∼

νa(Nf)
Ej

p3δf(p, θ)
p=xEj

,

x =
p
Ej

θ
→

∼ E ∼ T
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Effective Kinetic description
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C[{fi}] = + ,C2↔2[{fi}] C1↔2[{fi}]

[J. Blaizot et al. arXiv:1402.5049]
[J. Ghiglieri et al. arXiv: 1509.07773 ]

LPM resummed Rate.

[P. B. Arnold, G. D. Moore, and L. G. Yaffe (AMY) (2003)]

Elastic scatterings
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Energy Loss: Collinear cascade

❖ Three regimes: 
❖ Initial energy loss: mediated by gluon radiation 

and re-coil terms.
❖ Energy cascade: universality between gluon/

quark Jet  radiative break-up via successive 
splittings, reminiscent of turbulence

❖ Equilibration: exponential decay, linear 
response. 

→
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❖ Stationary turbulent solution in intermediate range 

❖ Scale invariant energy flux :

❖ Time dependent amplitude accounts for injection of energy due to 
radiation of hard particles :

❖ Chemistry fixed by the Kolmogorov spectrum:

T/E ≪ x ≪ 1

x ∼ 1

Collinear Cascade
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T/E 1Momentum Fraction: x =
p
E
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Energy Loss & Thermalization
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❖ Collinear cascade ❖ Broadening of the 
soft fragments (p~T)

❖ Energy loss dominated by collinear branchings followed by thermalization of the soft sector
❖ Negligible broadening of hard particles; Energy loss out-of-cone mainly due to energy 

deposition in the soft sector

Jet energy   and Ej = 100T g = 2.

[P. B. Arnold, G. D. Moore, and L. G. Yaffe (AMY) (2003)]
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Energy Loss & Thermalization

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

0 10 20 30 40 50

En
er

gy
:E

/E
0

Evolution time: ⌧ = g4T
r

T/Et

Evolution time: t [fm/c]

Gluon jet
x � 2⇡T/E

x � 0
R = 0.16
R = 0.32
R = 0.62
E = 500T

❖ Small cone-size: soft sector does not play a major role 
 similar energy loss in both momentum regions 

❖ Larger cone-size: soft sector carries substantial 
fraction of the equilibrated energy at late times  
early time energy loss diverges. 
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Sensitivity To The Initial Parton

❖ Characteristic time of the turbulent cascade is  

 (time it takes a parton to thermalize)

❖ Small cone-sizes show a scaling between partons of 
different energies.

❖ W/ deviations for larger cone-sizes.

tth =
1
αs

E
̂q
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Leading Parton Quenching Factors

❖ Leading parton quenching can be modeled as a moment 
of the distribution

❖ Leading parton quenching only sensitive to hard 
constituents, i.e. collinear cascade => in-medium 
splittings
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[R. Baier et al. arXiv:0106347]
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Modeling Jet Quenching
❖ We capture the first emission using the BDMPS 

finite medium rate  
❖ Model medium energy loss by computing the 

energy remaining inside the cone   
after a time (  )

❖ Jet quenching recovers energy from the soft sector 
for large cone size => medium response

❖ Energy loss currently over-estimated due to 
neglecting finite size effects on medium-induced 
emission rates (work in progress)

dΓ
dω

(P, ω, t)

E(ω, R, L − t)
L − t

12

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

50 100 150 200

Je
t

qu
en

ch
in

g
fa

ct
or

:
Q

je
t

A
A

pT/T

pT [GeV]

R = 0.62
R = 0.32
R = 0.16

x > 2πT/E
Quark jet

t = 5fm/c

Sensitivity to soft 
fragments

[Y. Mehtar-Tani, & K. Tywoniuk arXiv: 1707.07361]
[R. Baier et al. arXiv: hep-ph/0106347]
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Conclusion

❖ Energy loss is governed by an inverse energy cascade: driven by successive splitting 

❖ Mechanisms underlying energy loss similar to QGP thermalization  low energetic partons 
 more sensitive to the medium scale

❖ High energy distribution stays collinear  energy at large angles ( ) is mainly sensitive to 
soft scales

❖ Leading parton quenching is sensitive to the in-medium cascade

❖ Jet quenching sensitive to soft physics 

→
(E ≲ 30T)

→ θ > 0.2
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❖ Multiple soft scatterings with the medium kick the 
parton slightly off-shell  leading to radiation of a 
gluon ( , )

❖ : the medium cannot resolve the quanta 
until it’s formed

❖ : multiple soft scatterings with the 
medium act coherently leading to interference 
effects that has to be resummed

→
ω k

tf ≪ λmfp

tf ≫ λmfp

Landau-Pomeranchuck-Migdal (LPM) effect 
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❖ In-medium radiation rates given by 

❖ where the g fct solves 

❖ Elastic scatterings are described using 
the broadening kernel

Collinear Radiation
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Late Time Thermalization

❖ The jet has lost most energy by the time near equilibrium physics sets in
      —> Not relevant for jet physics.
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Angular Cascade
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θ

⃗p z

Jet energy   and Ej = 100T g = 2.
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Comparison With Small Angle Approx

❖ Small angle approx can reproduce the 
broadening at different scales

❖ A scale independent broadening coefficient 
cannot simultaneously describe both the 
broadening at large momentum fraction 
and the equilibration in the soft scale.

❖  must be scale dependent̂q
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Quenching Factors

❖ The spectrum is computed using a convolution with particle 
distribution

❖ The convolution is computed using the energy remaining inside 
the cone
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[R. Baier et al. In: JHEP 09 (2001), p. 033.]


