Resolving the Scales of the Quark-Gluon Plasma with Energy Correlators

Carlota Andres, Fabio Dominguez, Raghav Kunnawalkam Elayavalli, JH, Cyrille Marquet, and Ian Moult

21/07/2022
Outline

1. Introduction

2. Correlation functions of $\mathcal{E}(\vec{n})$

3. The observable analytically

4. The observable numerically
We want to study the QGP in HIC.
– 20 years of HIC at RHIC, 10 years of HIC at the LHC, sPHENIX coming soon.

We need to study the QGP with sensitive QCD probes with good theoretical control...
Introduction

Prototypical observable:

\[R_{AA} = \frac{dN_{AA}/d^2p_T \, dy}{\langle N_{coll} \rangle \, dN_{pp}/d^2p_T \, dy} \]

\(R_{AA} \neq 1 \) for coloured probes.

Principle mechanism is energy loss due to medium induced radiation.
Problem:
Jet quenching is a multi-scale process. It is difficult to unambiguously resolve the scales/properties of the QGP involved within current approaches.
Introduction

There has been a lot of work introducing observables.\cite{1512.08107, 1710.03237, 1812.05111, 2010.00028}, and more

We would like to present a new approach to add to this body of work.
Part 2: Correlation functions of $\mathcal{E}(\hat{n})$

6. Initial Conditions from Inflation

- CMB (Hlozek et al. 2011)
- Weak Lensing (Tinker et al. 2011)
- Clusters (Sehgal et al. 2011)
- CMB Lensing (Das et al. 2011)
- Galaxy Clustering (Reid et al. 2010)
- LyA (McDonald et al. 2006)

Figure 6.4: Compilation of the latest measurements of the matter power spectrum.

Figure 6.5: The latest measurements of the CMB angular power spectrum by the Planck satellite.

6.6.2 CMB Anisotropies

The temperature fluctuations in the cosmic microwave background are sourced predominantly by scalar (density) fluctuations. Acoustic oscillations in the primordial plasma before recombination lead to a characteristic peak structure of the angular power spectrum of the CMB; see fig. 6.5. The precise shape of the spectrum depends both on the initial conditions (through the parameters A_s and n_s) and the cosmological parameters (through parameters like $\Omega, \Omega\cdots$).
Correlation functions of $\mathcal{E}(\vec{n})$

Maldacena: People do not do this, I haven’t figured out why they don’t. I think they just haven’t thought about this.

Polchinski: There is a lot of QCD data... can they see this scaling?

Can you resolve separate jets well enough to study the small angles?

Well, this is the point - here you don’t have to talk about jets!
Correlation functions of $\mathcal{E}(\vec{n})$

Recap

- Correlation functions in statistics:
 - $\text{Corr}_2(X, Y) = \langle XY \rangle - \langle X \rangle \langle Y \rangle$ (also just the covariance)
 - $\text{Corr}_3(X, Y, Z) = \langle XYZ \rangle - \langle X \rangle (\langle Y \rangle \langle Z \rangle - \text{Corr}_2(Y, Z))$
 - ...

- In physics we usually refer to $\langle X_1 \ldots X_n \rangle$ as an n point correlator. This is just conventional and has origins in that often $\langle X_i \rangle = 0$.

- QFT correlators (propogators) relate back to these statistical correlators through the path integral and statistical mechanics...
Correlation functions of $\mathcal{E}(\vec{n})$

• Generally one can define correlators of any quantum charge or conserved quantity.

• For QCD, correlators of energy flux are usually of most interest – these naturally remove soft physics without grooming.

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_0^\infty dt \ r^2 n^i T_{0i}(t, r\vec{n})$$

$$\mathcal{E}(\vec{n}) = \int_0^\infty dt \ E_{\text{flux through } \Delta \Omega}(t)$$
Correlation functions of $\mathcal{E}(\vec{n})$

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_0^\infty dt \, r^2 n^i T_{0i}(t, r\vec{n})$$

So what does \hat{T}_{0i} look like?

Most simply with confined particle states:

$$n^i \langle \hat{T}_{0i} \rangle(t) \propto \sum_i E_i \quad \text{where } E_i \text{ is the energy of a particle which passes through the } \Delta \Omega \text{ normal to } n^i \text{ at a time } t.$$

In short, $\langle \hat{\mathcal{E}}(\vec{n}) \rangle$ is just a QFT definition of a calorimeter.
Correlation functions of $\mathcal{E}(\vec{n})$

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_{0}^{\infty} dt \ r^2 n^i T_{0i}(t, r \vec{n})$$

In fact, one can show that all collider observables can be expressed as a weighted sum over energy correlators:

$$\langle O \rangle = \sum_{i} C_{i}(O) \int d\vec{n}_{1,..,i} \langle \mathcal{E}(\vec{n}_{1}) \ldots \mathcal{E}(\vec{n}_{i}) \rangle.$$

Perhaps not surprising when one thinks of a $\mathcal{E}(\vec{n})$ as providing the idealised output of a calorimeter.

Also intuitively, higher point correlators are more differential and so provide more information on the process at hand.
Correlation functions of $\mathcal{E}(\vec{n})$

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_0^{\infty} dt \ r^2 n^i T_{0i}(t, r \vec{n})$$

$$\frac{\langle \mathcal{E}^n(\vec{n}_1)\mathcal{E}^n(\vec{n}_2) \rangle}{Q^{2n}} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma_{ij}}{d\vec{n}_i d\vec{n}_j} \frac{E^n_i E^n_j}{Q^{2n}} \delta^{(2)}(\vec{n}_i - \vec{n}_1) \delta^{(2)}(\vec{n}_j - \vec{n}_2)$$
Correlation functions of $\mathcal{E}(\mathbf{n})$

$$\mathcal{E}(\mathbf{n}) = \lim_{r \to \infty} \int_0^\infty dt \ r^2 n^i T_0(t, r\mathbf{n})$$

$$\frac{\langle \mathcal{E}^n(\mathbf{n}_1) \mathcal{E}^n(\mathbf{n}_2) \rangle}{Q^{2n}} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma_{ij}}{d\mathbf{n}_i d\mathbf{n}_j} \frac{E^n_i E^n_j}{Q^{2n}} \delta^{(2)}(\mathbf{n}_i - \mathbf{n}_1) \delta^{(2)}(\mathbf{n}_j - \mathbf{n}_2)$$
Correlation functions of $\mathcal{E}(\vec{n})$

Pros:
• Defined on inclusive cross-sections and can be made insensitive to soft radiation. Textbook example of where pp CSS factorisation can be used without any violation.

$$\frac{d\sigma}{d\zeta} = \int dE_l E_j^2 H(E_j) J_{EC}(\zeta, E_j) + \text{power corrections}, \quad 2109.03665$$

• Well studied by CFT community. Powerful techniques exist for calculations: light-ray OPE, celestial Blocks, lorentzian inversion. 2202.04085

• Including the only calculation of jet substructure at strong coupling. 0803.1467

Cons:
• Tend to be reliant on high stats.
• Not event-by-event so cannot be directly used to tag.
Case Study: vacuum jets

In summary: The small angle behavior of the energy correlation functions is determined by the spin $j = 3$ non-local operators that appear in the OPE.

$$\langle \mathcal{E}(\theta_1)\mathcal{E}(\theta_2) \cdots \rangle \sim \sum_n |\theta_{12}|^{\tau_n - 4} (U_{3-1,n}(\theta_2) \cdots)$$ (2.19)

$$\tau_n(j) = 2 - \gamma(j), \text{ in the formula above } j = 3 \quad R_L \sim \theta$$

In a CFT $\gamma(j)$ is a constant whilst in QCD the running coupling causes $\gamma(j)$ to have logarithmic scale dependence but at LL the structure is otherwise unchanged.

$$\gamma(j) > \gamma(j - 1)$$

An n-point correlator has a $\tau(j = n + 1) = 2 - \gamma(j = n + 1)$ scaling

$$R_L \sim \frac{\Lambda_{\text{QCD}}}{p_{T \text{ jet}}}$$ breaks the OPE scaling of approx assymptotically free dynamics.
Correlation functions of $\mathcal{E}(\vec{n})$

Which correlation function is the one for us?

• In the previous slide the 2-point correlator gives a sensitive probe of hadronisation.
• In 2201.08393 the 3-point provided a sensitive probe to the top mass.

Look to what is currently done and successful.

• R_{AA} can be expressed as a function of one-point correlators + corrections:
 • $R_{AA} = \langle N_{AA} \rangle / (\langle N_{\text{Coll}} \rangle \langle N_{pp} \rangle)$. $\langle N \rangle$ is the one point correlator of the number operator and due to momentum conservation $\langle N \rangle \approx \langle \mathcal{E} \rangle / \langle Q \rangle$.

• In effect, R_{AA} gives access to the simplest but also least sensitive correlator. Let us increase the sensitivity (at the expense of a little more complexity) by looking directly at the 2-point correlator.
Part 3: The observable analytically

\[\frac{d\Sigma^{(n)}}{d\theta} = \int d\vec{n}_{1,2} \frac{\langle \mathcal{E}^n(\vec{n}_1)\mathcal{E}^n(\vec{n}_2) \rangle}{Q^{2n}} \delta(\vec{n}_2 \cdot \vec{n}_1 - \cos \theta). \]
The observable analytically

Vacuum $\theta \ll 1$ resummation

$$\frac{d\Sigma^{(1)}}{d\theta} \sim \frac{1}{\theta^{1-\gamma(3)}} + \mathcal{O}(\theta^0)$$

$\theta > (EL)^{-1/2}$ Medium induced quenching

$$\frac{d\Sigma^{(n)}}{d\theta} \bigg|_{\theta \gtrsim \theta_L} = \frac{1}{\sigma_{qq}} \int dz \frac{d\sigma_{qq}}{d\theta dz} z^n (1-z)^n$$

$$\times \left(1 + \mathcal{O}(\alpha_s \ln \theta_L^{-1}) + \mathcal{O} \left(\alpha_s \frac{\mu_s^n}{E^n} \right) \right)$$

$$\frac{d\sigma_{qq}}{d\theta dz} = \frac{d\sigma_{qq}^{\text{vac}}}{d\theta dz} (1 + F_{\text{med}}(z, \theta, \hat{q}, L))$$

$$\frac{d\sigma_{qq}^{\text{vac}}}{d\theta dz} \approx \frac{\alpha_s C_F \sigma}{\pi} \frac{1 + (1-z)^2}{z / \theta} + \mathcal{O}(\alpha_s^2, \theta^0)$$

Equiv. to $t_f < L$

1907.03653, 2107.02542
The observable analytically

\[
\frac{d\sigma_{qq}}{d\theta dz} = \frac{d\sigma_{qq}^{\text{vac}}}{d\theta dz} (1 + F_{\text{med}}(z, \theta, \hat{q}, L))
\]

Static brick medium: length \(L \), transport coefficient \(\hat{q} \).

We assume up to one hard splitting occurs in the medium: \(q \rightarrow qg \).

The initial quark is considered to have large light-cone energy, as do both its decay products.
Formally, \(E \rightarrow \infty \) and \(0 \ll z \ll 1 \).

All three particles undergo broadening and energy loss by interacting with the medium. Broadening and energy loss are resumed in the BDMPS-Z formalism with a harmonic oscillator potential.

We study quark jets with substructure formed from the \(q \rightarrow qg \) process. The diagrams are drawn for \(\gamma \rightarrow qq \) processes without meaningful loss of information: 2107.02542 considered \(\gamma \rightarrow qq, q \rightarrow qg, \) and \(g \rightarrow gg \) processes.
The observable analytically

Vacuum $\theta \ll 1$ resummation $\quad \theta > (EL)^{-1/2}$ Medium induced quenching

$$
\frac{d\Sigma^{(n)}}{d\theta} = \int \frac{dz}{\sigma_{qq}} \frac{d\sigma^{\text{vac}}_{qq}}{d\theta dz} \left(g^{(n)}(\theta, \alpha_s) + F_{\text{med}}(z, \theta, \hat{q}, L) \right) \nonumber (7)
$$

$$
\times z^n (1-z)^n \left(1 + \mathcal{O}(\alpha_s \ln \theta^{-1}) + \mathcal{O} \left(\alpha_s \frac{\mu^n_s}{E^n} \right) \right),
$$

where $g^{(1)} = \theta^{(3)}$ at fixed coupling The expression for $g^{(n)}$ with $n > 1$ is more complicated. However, crucially one still has that $g^{(n)} \rightarrow 1$ as $\alpha_s \ln \theta^{-1} \rightarrow 0$.

21/07/2022
Part 4: The observable numerically

\[F_{\text{med}} = 2 \int_0^L \frac{dt_1}{t_f} \left[\int_{t_1}^L \frac{dt_2}{t_f} \cos \left(\frac{t_2 - t_1}{t_f} \right) C^{(4)}(L, t_2)C^{(3)}(t_2, t_1) - \sin \left(\frac{L - t_1}{t_f} \right) C^{(3)}(L, t_1) \right] \]

\[C_N^{(n)}(t_2, t_1) = \frac{1}{N^2 - 1} \left\langle u [v_2^1 v_1^1] [v_2^1 v_1^1] - \frac{1}{N^2} u [v_1^1 v_1^1] \right\rangle . \]

\[C_N^{(n)}(t_2, t_1) = e^{-\frac{1}{3} \Delta_0^2 \delta_{n,0}}(N^2 - n_0) \left(t_2 + \frac{t_1}{2} \right)^{1/2} . \]

\[C_N^{(n)}(L, t_1) = \frac{1}{N^2 - 1} \left\langle u [v_1^1 v_1^1] [v_2^1 v_1^1] - \frac{1}{N^2} u [v_1^1 v_1^1] \right\rangle , \]

\[\frac{1}{N^2} \left(u [v_1^1 v_1^1] [v_2^1 v_1^1] u [v_1^1 v_1^1] \right) \approx e^{-\frac{1}{3} \Delta_0^2 \delta_{n,0}}(L - t_1)^2 (1 - 2z + 3z^2) \]

\[\times \left(1 - \frac{1}{2} \delta^2 (1 - z)(t_2 - t_1)^2 \int_0^L \mathrm{d}x \exp \left(-\frac{1}{2} \delta^2 x^2 + \frac{1}{4} \delta^2 x (t_2 - t_1)^2 \right) \right) \]
For angles $\theta_c \gg \theta \gg \theta_L$, the quark jet undergoes some energy loss but the substructure is not resolved.

Initial splitting can be resolved by the medium when $\theta \gg \theta_L$. Broadening and energy loss occur.
The observable numerically

\[\theta_C \gg \theta_L \quad \text{and} \quad L = 10 \text{ GeV}^{-1} \equiv 2 \text{ fm} \]

\[\theta_C \ll \theta_L \]

\[\langle \mathcal{E} \rangle, E=100 \text{ GeV}, L=10 \text{ GeV}^{-1} \]

\[\langle \mathcal{E} \rangle, E=100 \text{ GeV}, L=50 \text{ GeV}^{-1} \]
The observable numerically

\[\theta_c \gg \theta_L \quad L = 10 \text{ GeV}^{-1} \equiv 2 \text{ fm} \]

\[\theta_c \ll \theta_L \]

\[\langle \mathcal{E}\mathcal{E} \rangle, E=100 \text{ GeV}, L=10 \text{ GeV}^{-1} \]

\[\langle \mathcal{E}\mathcal{E} \rangle, E=100 \text{ GeV}, L=50 \text{ GeV}^{-1} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{on,\theta}} \frac{d \Sigma_{\text{on,\theta}}}{d \theta} \]

\[\frac{1}{\Sigma_\text{vac,\theta}} \frac{d \Sigma_{\text{vac,\theta}}}{d \theta} \]
The observable numerically

\[\hat{q} = 0.3 \text{ GeV}^3, \; L = 25 \text{ GeV}^{-1} \]

\[\theta_c \ll \theta_L \]

\[\theta_c \gg \theta_L \]

\[\text{Eq. 7 numerical evaluation} \]

\[\theta_{\text{on}} / \theta_{\text{peak}} \sim L^{0.99} \hat{q}^{-0.16} : E > \hat{q}L^2 \]

\[\theta_{\text{on}} / \theta_{\text{peak}} \sim L^{0.35} \hat{q}^{-0.72} : E < \hat{q}L^2 \]
The observable numerically

An analysis in JEWEL is now also under way.

Early results indicate the main features of the curves are resilient against a hadron $p_t \gtrsim 2$ GeV.

Complimentarity between be measurement at sPHENIX and LHC.
Conclusions

Energy Correlators are cool and fun! 😊

• Our early results suggest properties of the QGP can be resolved by using energy correlators for jet substructure.

• Our initial analysis uses the BDMPS-Z model for the numerics. However, the basic features should be model independent, they are set by formation times and uncertainty relations. Could not be explained by changing q/g fraction.

• Correlators are naturally insensitive to low scale physics – hadronisation, background and soft corrections typically are sub-leading.

• We are optimistic for a future measurement at sPHENIX and are studying feasibility in JEWEL.
\[\mathcal{M}_{\gamma \rightarrow q\bar{q}} = \frac{e^{-i \frac{p_1^2}{2zE} L + i \frac{p_2^2}{2(1-z)E} L}}{E} \int_{0}^{\infty} dt \int_{k_1,k_2} [G(p_1, L; k_1, t E) G(p_2, L; k_2, -(1-z)E)]_{ij} \times \gamma_{\lambda,s,s'}(z) k \cdot e^*_\lambda G_0(k_1 + k_2, t E) \]

\[G(p_1, t_1; p_0, t_0) = \int_{x_1, x_2} e^{-i p_1 \cdot x_1 + i p_0 \cdot x_0} G(\bar{x}_1, \bar{x}_0) \]

\[G(\bar{x}_1, \bar{x}_0) = \int_{r(t_0) = \bar{x}_0} \mathcal{D}r \exp \left[i \frac{E}{2} \int_{t_0}^{t_1} ds \dot{r}^2 \right] V(t_1, t_0; [r]) \]

\[V(t_1, t_0; [r]) = \mathcal{P} \exp \left[i g \int_{t_0}^{t_1} dt t^a A^{-a}(t, r(t)) \right] \]

\[\frac{dN_{\text{med}}}{dz dp^2} = \frac{1}{4(2\pi)^2 z(1-z)} \langle |\mathcal{M}_{\gamma \rightarrow q\bar{q}}|^2 \rangle = \frac{1}{4(2\pi)^2 z(1-z)} \langle |\mathcal{M}_{\gamma \rightarrow q\bar{q}}^{\text{in}} + \mathcal{M}_{\gamma \rightarrow q\bar{q}}^{\text{out}}|^2 \rangle \]
Part N/A: Supplemental Material

\[\frac{d\sigma_{qq}}{d\theta dz} = \frac{d\sigma_{qq}^{\text{vac}}}{d\theta dz} (1 + F_{\text{med}}(z, \theta, \hat{q}, L)) \]

\[F_{\text{med}} = 2 \int_0^L \frac{dt_1}{t_f} \left[\int_{t_1}^L \frac{dt_2}{t_f} \cos \left(\frac{t_2 - t_1}{t_f} \right) C^{(4)}(L, t_2)C^{(3)}(t_2, t_1) - \sin \left(\frac{L - t_1}{t_f} \right) C^{(3)}(L, t_1) \right] \]

\[C^{(3)}_{gg}(t_2, t_1) = \frac{1}{N_c^2 - 1} \left(\text{tr} [V_2^\dagger V_1 \text{tr} [V_0^\dagger V_2] - \frac{1}{N_c} \text{tr} [V_0^\dagger V_1] \right) \]

\[C^{(4)}_{gg}(L, t_2) = \frac{1}{N_c^2 - 1} \left(\text{tr} [V_1^\dagger V_1 V_2^\dagger V_2] \text{tr} [V_2^\dagger V_2] - \frac{1}{N_c} \text{tr} [V_1^\dagger V_1] \right) \]

\[\frac{1}{N_c^2} \langle \text{tr} [V_1 V_2^\dagger V_2] \rangle \simeq e^{-\frac{1}{2} \hat{q} \hat{q}^2 (t-t_2)(t_2-t_1)^2 (1-2z+3z^2)} \]

\[\times \left(1 - \frac{1}{2} \hat{q} \hat{q}^2 z(1-z)(t_2 - t_1)^2 \int_{t_2}^t ds e^{-\frac{1}{2} \hat{q} \hat{q}^2 [(s-t_2)^2(2s-3t_1+t_2)+6z(1-z)(s-t_2)(t_2-t_1)^2]} \right) \]

21/07/2022