sPHENIX spin and cold QCD

sPHENIX RBRC workshop

July 22

Ralf Seidl (RIKEN)

Main QCD Spin Questions

- How is the spin of the proton distributed? What is the role of gluons and sea quarks?
- What is the origin of transverse spin effects and how does it relate to the 3D momentum and position structure of the Nucleon?
- Closely intertwined: How does QCD create 99% of the visible mass of the universe? How does confinement work?
- From nucleus to nuclei, high gluon densities

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_G + \mathcal{L}_q \quad \textcircled{4}$

- Sivers, Collins effects, TMDs GPDs, orbital angular momentum, Tomography
- Fragmentation functions and their spin, flavor, type, long. and transverse momentum dependence
- nuclear modification of PDF/FFs, low-x behavior

q-g correlation

g-g correlation (trigluon)

Transverse spin

Main questions:

- Origin of large A_Ns: initial state? Final state?
- Connections between higher twist and TMDs
- Nuclear/low-x modification of A_Ns?

R.Seidl: Spin/coldQCD

Transverse single spin asymmetries

- Large left-right asymmetries A_N seen in polarized pp collisions from low energies up to highest RHIC energies
- Both initial state and final state effects contribute in the same asymmetries
- TMD interpretation not directly applicable as only one scale process instead of 2 scales (P_T in p+p vs Q² and P_{hT})
- Higher twist interpretation is applicable; related to the TMD moments

Phys.Rev. D90 (2014) 7, 072008 Phys.Rev. D90 (2014) 1, 012006

RIKEK

TSSAs at RHIC→Quark-gluon dynamics!

- Sivers and Collins effects rely on an explicitly transverse momentum dependent (TMD) framework where two scales are observed: high scale (typically Q²) and intermediate scale (transverse momentum $P_T << Q^2$)
- In inclusive pp measurements usually only one, hard scale accessible (transverse momentum P_T)
- → requires higher Twist, collinear framework, contributions are multi-parton correlators (both in initial state and final state)
- Both frameworks found to be related via moments over intrinsic transverse momenta

q-g correlation (↔ quark Sivers)

g-g correlation (trigluon ↔ gluon Sivers)

 P_h/z

Single spin asymmetry contributions in p+p

 $pol proton PDF^* unpol proton PDF^* FS particle FF^*$ $\approx \sum_{a,b,c} \phi_{a/A}^{(3)}(x_1, x_2, s) \otimes \phi_{b/B}(x') \otimes D_{c \to C}(z)$ $+ \sum_{a,b,c} \delta q_{a/A}(x, s) \otimes \phi_{b/B}^{(3)}(x'_1, x'_2) \otimes D_{c \to C}(z)$ $+ \sum_{a,b,c} \delta q_{a/A}(x, s) \otimes \phi_{b/B}(x') \otimes D_{c \to C}^{(3)}(z_1, z_2)$

a,b/c initial/final parton flavors A,B/C initial/final hadron/particle types

Efremov, Teryaev Phys.Lett.B 348 (1995) 577 *Qiu, Sterman <u>Phys.Rev.D</u> 59 (1999) 014004 Kanazawa, Koike <u>Phys.Lett.B</u> 478 (2000) 121-126 Metz, Pitonyak <u>Phys.Lett.B</u> 723 (2013) 365-370*

- Generally three pieces to p+p single transverse spin asymmetries:
 - Twist three correlation functions (quarks or gluons) in polarized proton ↔ Sivers function
 - Twist three correlation function in unpolarized proton (with transversity) ↔ Boer Mulders function
 - Twist three correlation in fragmentation ↔ Collins function

 A_N

Direct photon measurements: the golden channel

- As photon interacts only electromagnetically there are no final state effects → only probe initial state effects
- Hard process contributions strongly favor quark-gluon interaction (very little quark-quark contributions)
- Excellent probe of the tri-gluon correlator
- But EM interaction costs you $\frac{1}{\sqrt{\alpha_{EM}}}$ \rightarrow statistically difficult

 Also not all photons produced directly → need to understand and measure Background and its asymmetry

First direct photon ANs

- First direct photon A_N extracted at RHIC
- Mostly sensitive to initial state effects (no fragmentation) → quark-gluon and gluon-gluon correlation functions
- Power to constrain gluon-gluon correlation function well, since quark impact expected to be small

Phys.Rev.Lett. 127 (2021) 162001

Gluon dynamics via γ, HF TSSA

 TSSA of prompt photon **EMCal-based trigger**

 Substantial improvement possible with sPHENIX

9

12

p_[GeV/c]

Heavy Flavor electron A_Ns

PHENIX, submitted to PRL https://arxiv.org/abs/2204.12899

RIKEH

- $a^{2}0.08 p^{\uparrow} + p \rightarrow e^{+/-} + X$ Open Heavy Flavor e⁺ Open Heavy Flavor e √s = 200 GeV 0.06 $|\eta| < 0.35$ PRD78, 114013 0.04 PHENIX $\frac{(\lambda_{f}, \lambda_{d}) = (-0.01, 0.11) \text{ GeV}}{(\lambda_{f}, \lambda_{d}) = (-0.01, 0.11) \text{ GeV}}$ 0.02 PRD84, 014026 $K_{G} = 6.0 \times 10^{-4} K_{G} = 2.5 \times 10^{-4}$ -0.02 $K_{G} = 6.0 \times 10^{-4} K_{G} = 2.5 \times 10^{-4}$ -0.04 3.4% polarization scale uncertainty not included -0.06 `//c1 $A_{\scriptscriptstyle N}(p^\uparrow {\scriptscriptstyle +} p \to HF(e^{{\scriptscriptstyle +/ {\scriptscriptstyle -}}}) + X)$ ₹0.2 √s = 200 GeV $|\eta| < 0.35$ 0.1 PHENIX Theory: PRD78, 114013 $A_{N}^{D^{0}/\overline{D}^{0}} \rightarrow e^{+/-}(\lambda_{f},\lambda_{d})$ -0.15 -0.05 R.Seidl: Spin/coldQCD 10
- Almost only gluon related, no final state effects → tri-gluon correlation
- Potential to constrain parameter ranges in D meson A_N theory calculations: <u>PRD78</u>, 114013 (Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan)
- Comparison or charges provides further sensitivity

Gluon dynamics via HF TSSA

- In sPHENIX possiblity to actually measure D meson asymmetries
- Ordering of asymmetries for D and Dbar will constrain tri-gluon correlations further

sPHENIX BUP2021 [sPH-TRG-2021-001]

TSSA of prompt D⁰→πK
Enabled by streaming readout

Di-jet spin-dependent imbalance

- Use di-jet imbalance and calculate single spin asymmetry
- Sensitive to spin dependent intrinsic transverse momentum kt kick (from Sivers effect)
- First indications seen by STAR after enhancing up or down flavors via jet charge selection
- Model-dependent extraction of up, down and g+sea contributions

7/22/2022

Figures taken fro S.Wissink's Spin2021 presentation

13

7/22/2022

Nature of hadron A_N in pp and its nuclear modification

- PHENIX and STAR show significant different suppression of hadron A_N from pp to pA in distinct kinematic regions
- sPHENIX hadron A_N will explore wider region to help disentangle initial/final state effects
- Enabled by streaming recorded p + p collision from far vertex collisions

sPHENIX BUP2021 [sPH-TRG-2021-001]

Transversity measurements \rightarrow tensor charge

- Try to add to transversity/tensor charge measurements:
 - Most of the data from SIDIS fixed target measurements + e+e- Fragmentation data
 - Little sensitivity to d quarks so far (u quark dominance in DIS)
 - p+p has more sensisitivy to d quark contributions

STAR: https://arxiv.org/abs/2203.00180

RIKEN

Transversity via charged particle IFF

- Good statistics enabled by both calorimetric jet trigger and streaming readout
- Need theory collaboration in the treatment of no-PID charged tracks & multi-dim binning

Fragmentation in p+A

- Access gluon fragmentation function (FF) in p + p, p + A via jet FF
- Calorimetric triggered jet + precision tracking

Summary

- Improved measurements for transverse spin asymmetries, nontrivial A dependence, new ideas coming out of existing RHIC measurements
- sPHENIX provides unique opportunities for spin/cQCD measurements using jet and rate capabilities to pin down

R.Seidl: Spin/coldQCD

- Transverse spin effects for direct photons, D meson asymmetries,
- Collins and di-hadron Transversity access
- Nuclear dependence of asymmetries and fragmentation functions
- Preparations for actual spin running QA ongoing

Proposed run schedule, year 1-3

sPHENIX BUP2021 [sPH-TRG-2021-001], 24 (& 28) cryo-week scenarios

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
	X	[GeV]	Weeks	Weeks	z < 10 cm	$ z < 10 ext{ cm}$
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	$0.3 (0.4) \text{ pb}^{-1} [5 \text{ kHz}]$	45 (62) pb ⁻¹
2024	$p^{\uparrow}+Au$	200	_	5	4.5 (6.2) pb^{-1} [10%- <i>str</i>] 0.003 pb^{-1} [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

sPHENIX asked to consider

- 20-28 week runs in 2024
- (Trans-)polarized p + p, p + A with
- streaming readout for
- 28 weeks in Run24 But short Run24

would endanger the p + A

data!

