Jets for precision QCD and spin dynamics

Zhongbo Kang UCLA

RBRC Workshop: Predictions for sPHENIX July 20 – 22, 2022

sPHENIX beam use

Jet and heavy flavor machine

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	$ z < 10 { m cm}$
2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \mathrm{nb}^{-1}$	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb}^{-1}$
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Jet shape

Differential and integrated jet shape

$$\psi(r) = \frac{\sum_{r_i < r} p_{T_i}}{\sum_{r_i < R} p_{T_i}}$$

$$\rho(r) = \frac{\mathrm{d}\psi(r)}{\mathrm{d}r}$$

Inclusive (light) jet shape

Pythia usually describes well the light jet shape

Heavy flavor jet shape

Standard jet axis

CDF collaboration, A. Lister, thesis

FIGURE 8.12: Hadron level integrated jet shapes in data but using the raw inclusive shapes obtained from Pythia Tune A MC. The results are shown as black points. Only the statistical errors are shown. The MC predictions for inclusive jets and for b-jets are shown as red and black curves, respectively.

CMS b-jet measurement

Winner-takes-all (WTA) jet axis

Contributions of b jet substructure

Two contributions at LO

 It is very important to be able to distinguish these two contributions, to fully understand the true "b-jet" dynamics (such as mass effect, dead-cone)

B jet production

- Various contributions
 - Gluon splitting to b+bbar is significnat

Huang, Kang, Vitev, PLB 2013

Similarly for b jet shape

Contains 1 b quark, 2 b quark, etc: lots of information

Take advantage of this fact

FIGURE 8.17: Hadron level integrated jet shapes for b-quark jets in data (black points). The total errors are shown. The Pythia Tune A MC predictions using the default and the fitted f_{1b} fractions are also shown (dotted and full black lines, respectively) along with the predictions for single and double b-quark jet shapes (red and blue lines, respectively).

B quark-initiated b jet

- sPHENIX: it should be possible to select b-quark initiated b jets by requiring that there is only 1 b quark inside the jet
- The b jets that contain 2+ b quarks inside the jet behave more like a gluon jet
 - This is not what we want to study
 - We should remove these samples from the final b-jet data

Other approaches

 There are other methods we proposed in the past, that would also allow us to pick up the b-quark initiated b jets

B meson tagged b jet production Huang, Kang, Vitev, Xing, PLB 2015

Heavy flavor dijet

Leading, sub-leading b-jets

Kang, Reiten, Vitev, Yoon, PRD 2019

Invariant mass of dijets

In sPHENIX document

Figure 7.7: Projected statistical uncertainties of nuclear modification for back-to-back *b*-jet pairs (left) and *b*-jet-light-jet super-ratio (right) along with pQCD calculations from Ref. [22]

See Vitev's talk at the workshop

Jet fragmentation function: light and heavy

- Hadron distribution inside a jet $p+p ightarrow { m jet} \left(h ight) + X$

 $z(J/\psi)$

Light hadrons: work well

Light charged hadrons

Kang, Ringer, Vitev, JHEP, 16

Jet fragmentation function for heavy meson

Using D meson FFs fitted from e+e- data Kneesch, Kniehl, Kramer, Schienbein, 08

Using ZM-VFNS scheme: Chien, Kang, Ringer, Vitev, Xing, 1512.06851, JHEP 16

Jet fragmentation function for heavy meson

Using D meson FFs fitted from e+e- data Kneesch, Kniehl, Kramer, Schienbein, 08

Using ZM-VFNS scheme: Chien, Kang, Ringer, Vitev, Xing, 1512.06851, JHEP 16

$$- - - D_g^D(z,\mu) \rightarrow 2D_g^D(z,\mu)$$

New fit of D-meson FFs needed

A new global analysis of FFs

New fit of D-meson FFs

New fit of D-meson FFs: Stratmann, et.al., PRD 2017

Confirms earlier guess

Jet substructure: polarized jet fragmentation function

Imbalance + TMD hadron in jet

Kang, Lee, Zhao, PLB 20 Kang, Lee, Shao, Zhao, JHEP 2021

 Two handles: imbalance qT controls TMD PDFs, while jT of hadron in jet controls TMD FFs

 $\frac{d\sigma^{p(S_A)+e(\lambda_e)\to e+(jet\,h(S_h))+X}}{d^2 \mathbf{p}_T dy_J d^2 \mathbf{q}_T dz_h d^2 \mathbf{j}_\perp} = F_{UU,U} + \cos(\phi_q - \hat{\phi}_h) F_{UU,U}^{\cos(\phi_q - \hat{\phi}_h)}$ $+\sin(\hat{\phi}_{S_{h}}-\phi_{q})F_{UU,T}^{\sin(\hat{\phi}_{S_{h}}-\phi_{q})}+\sin(2\hat{\phi}_{h}-\hat{\phi}_{S_{h}}-\phi_{q})F_{UU,T}^{\sin(2\hat{\phi}_{h}-\hat{\phi}_{S_{h}}-\phi_{q})}$ $+\Lambda_p \bigg[\cos(\hat{\phi}_h - \hat{\phi}_{S_h}) F_{LU,T}^{\cos(\hat{\phi}_h - \hat{\phi}_{S_h})} + \cos(\phi_q - \hat{\phi}_{S_h}) F_{LU,T}^{\cos(\phi_q - \hat{\phi}_{S_h})} \bigg]$ $+\Lambda_p \left\{ \lambda_e F_{LL,U} + \sin(\phi_q - \hat{\phi}_h) F_{LU,U}^{\sin(\phi_q - \hat{\phi}_h)} \right\}$ $+\cos(2\hat{\phi}_{h}-\hat{\phi}_{S_{h}}-\phi_{q})F_{LU,T}^{\cos(2\hat{\phi}_{h}-\hat{\phi}_{S_{h}}-\phi_{q})}+\lambda_{e}\sin(\hat{\phi}_{h}-\hat{\phi}_{S_{h}})F_{LL,T}^{\sin(\hat{\phi}_{h}-\hat{\phi}_{S_{h}})}\Big]$ $+ S_T \bigg\{ \sin(\phi_q - \phi_{S_A}) F_{TU,U}^{\sin(\phi_q - \phi_{S_A})} + \lambda_e \cos(\phi_q - \phi_{S_A}) F_{TL,U}^{\cos(\phi_q - \phi_{S_A})}$ $+ S_T \bigg[\cos(\phi_{S_A} - \hat{\phi}_{S_h}) F_{TU,T}^{\cos(\phi_{S_A} - \hat{\phi}_{S_h})} + \cos(2\hat{\phi}_h - \hat{\phi}_{S_h} - \phi_{S_A}) F_{TU,T}^{\cos(2\hat{\phi}_h - \hat{\phi}_{S_h} - \phi_{S_A})} \bigg]$ $+\sin(\phi_{S_{A}}-\hat{\phi}_{h})F_{TU,U}^{\sin(\phi_{S_{A}}-\hat{\phi}_{h})}+\sin(2\phi_{q}-\hat{\phi}_{h}-\phi_{S_{A}})F_{TU,U}^{\sin(2\phi_{q}-\hat{\phi}_{h}-\phi_{S_{A}})}\bigg\}$ $+\sin(\hat{\phi}_h-\hat{\phi}_{S_h})\sin(\phi_q-\phi_{S_A})F_{TU,T}^{\sin(\hat{\phi}_h-\hat{\phi}_{S_h})\sin(\phi_q-\phi_{S_A})}$ $+\Lambda_h \bigg\{ \lambda_e F_{UL,L} + \sin(\hat{\phi}_h - \phi_q) F_{UU,L}^{\sin(\hat{\phi}_h - \phi_q)} + \Lambda_p \bigg[F_{LU,L} + \cos(\hat{\phi}_h - \phi_q) F_{LU,L}^{\cos(\hat{\phi}_h - \phi_q)} \bigg]$ + $\cos(\hat{\phi}_h - \hat{\phi}_{S_h})\cos(\phi_q - \phi_{S_A}))F_{TUT}^{\cos(\hat{\phi}_h - \hat{\phi}_{S_h})\cos(\phi_q - \phi_{S_A})}$ $+\cos(2\phi_q-\phi_{S_A}-\hat{\phi}_{S_h})F_{TU,T}^{\cos(2\phi_q-\phi_{S_A}-\hat{\phi}_{S_h})}$ $+ S_T \bigg[\cos(\phi_q - \phi_{S_A}) F_{TU,L}^{\cos(\phi_q - \phi_{S_A})} + \lambda_e \sin(\phi_q - \phi_{S_A}) F_{TL,L}^{\sin(\phi_q - \phi_{S_A})} \bigg]$ $+\cos(2\hat{\phi}_{h}-\hat{\phi}_{S_{h}}+2\phi_{q}-\phi_{S_{A}})F_{TUT}^{\cos(2\hat{\phi}_{h}-\hat{\phi}_{S_{h}}+2\phi_{q}-\phi_{S_{A}})}$ $+ \cos(\phi_{S_A} - \hat{\phi}_h) F^{\cos(\phi_{S_A} - \hat{\phi}_h)}_{TU,L} + \cos(2\phi_q - \phi_{S_A} - \hat{\phi}_h) F^{\cos(2\phi_q - \phi_{S_A} - \hat{\phi}_h)}_{TU,L} \Big] \bigg\}$ $+ \lambda_e \cos(\hat{\phi}_h - \hat{\phi}_{S_h}) \sin(\phi_{S_A} - \phi_q) F_{TL,T}^{\cos(\hat{\phi}_h - \hat{\phi}_{S_h}) \sin(\phi_{S_A} - \phi_q)}$ $+ S_{h\perp} \bigg\{ \sin(\hat{\phi}_h - \hat{\phi}_{S_h}) F_{UU,T}^{\sin(\hat{\phi}_h - \hat{\phi}_{S_h})} + \lambda_e \cos(\hat{\phi}_h - \hat{\phi}_{S_h}) F_{UL,T}^{\cos(\hat{\phi}_h - \hat{\phi}_{S_h})} \bigg\}$ $+ \lambda_e \sin(\hat{\phi}_h - \hat{\phi}_{S_h}) \cos(\phi_{S_A} - \phi_q)) F_{TLT}^{\sin(\hat{\phi}_h - \hat{\phi}_{S_h}) \cos(\phi_{S_A} - \phi_q)}$

Collins effect inside the jet

 Earlier measurements: Collins asymmetry for hadron inside the jet in transversely polarized p+p collisions

STAR, 2205.11800

Lambda polarization inside the jet

Earlier prediction

Kang, Lee, Zhao, PLB 20

- Lambda transverse polarization in unpolarized p+p collisions
- sPHENIX should be able to measure this

Transverse spin transfer

- sPHENIX: incoming proton (transversely polarized) → transversely polarized Lambda inside the jet
 - Transversity fragmentation function

Kang, Terry, Vossen, Xu, Zhang, PRD 22

Collinear to TMDs: it's time

- These days, it is a standard exercise to quantify the cold nuclear matter effect via collinear nuclear PDFs
 - However, collinear PDFs are only for relatively inclusive process, e.g. pT spectrum of single inclusive hadron or jet production
 - Moving into the future, it is time for us to quantify the modification of 3D structure in the nucleus vs proton

Global fits of nuclear TMDs

Nuclear TMD PDFs and TMD FFs

FIG. 3. The extracted nuclear ratio for the TMDPDF (top) and the TMDFF (bottom) at $Q_0 = \sqrt{2.4}$ GeV. The light and dark bands are the same as in Fig. 2.

Alrashed, Anderle, Kang, Terry, Xing, 21

sPHENIX: p+A collisions

- The future sPHENIX run in transversely polarized p+p and p+A collisions would allow us
 - Probe hadron distribution inside the jet in p+p: both collinear and TMD distribution, both polarized and unpolarized distributions
 - Modified TMD FFs and TMD PDFs (both spin-independent and spin-dependent ones) in p+A
 - Test universality and evolution of such nuclear TMDs crossing different processes (SIDIS, DY)

Summary

- sPHENIX would open important opportunities for jets and heavy flavor study
- Jet substructure of heavy flavor jet could be a very promising direction at the sPHENIX
 - Heavy flavor jet shape
 - Heavy meson inside the jet
- Substructure of inclusive/light jets would also open new opportunities due to the polarization
 - Polarized jet fragmentation function in p+p
 - Modification and university of nuclear TMD PDFs and TMD FFs in p+A
- Looking forward to the exciting experimental data in the future

Thank you!