Jet and hadron nuclear modification factors

Aleksas Mazeliauskas

CERN Theoretical Physics Department

July 22, 2022

A. Huss, A. Kurkela, AM, R. Paatelainen, W. van der Schee, U. Wiedemann Phys.Rev.Lett. 126 (2021), Phys.Rev.C 103 (2021) [2007.13754, 2007.13758]

M. Attems, J. Brewer, G.M. Innocenti, AM, S. Park, W. van der Schee, U. Wiedemann [2203.11241]

2022-2028, Heidelberg

High-energy (HEP) and heavy-ion (HIP) physics paradigms of hadron collisions

Many medium signals have been observed in small systems, but not energy loss. Aleksas Mazeliauskas

System size scan with light ions at the LHC and RHIC

 $\sqrt{s_{NN}} \sim 7 \, \text{TeV}$ OO at LHC in 2024 STAR collected $\mathcal{L}_{\rm OO}=32\,{\rm nb}^{-1}$ at $\sqrt{s_{NN}}=200\,{\rm GeV}$

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	$ z < 10 { m ~cm}$
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	80 pb^{-1}
					80 pb ⁻¹ [100%-str]	
-	O+O	200	-	2	$18 \ \mathrm{nb}^{-1}$	37 nb^{-1}
					37 nb ⁻¹ [100%-str]	
-	Ar+Ar	200	-	2	6 nb^{-1}	12 nb^{-1}
					12 nb ⁻¹ [100%-str]	
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%-str/DeMux]	30 nb^{-1}

Potential sPHENIX Beam Use Proposal 2026-2027

• Measurements with peripheral AA and *p*A collisions are inconclusive.

Minimum bias oxygen-oxygen collisions probe the relevant size regime!

Aleksas Mazeliauskas

sPHENIX reach with light ions

Potential sPHENIX Beam Use Proposal 2026-2027

- \blacksquare OO and ArAr corresponds to $\langle N_{\rm part}\rangle\sim 10$ and $\langle N_{\rm part}\rangle\sim 25$
- \blacksquare Jet reach up to $p_T\sim 50\,{\rm GeV}$

Hadron (jet) nuclear modification factor R_{AA}

Ratio of spectrum in AA to an *equivalent number* N_{coll} of pp collisions.

$$R_{\mathsf{A}\mathsf{A}}(p_T) = \underbrace{\frac{1}{\langle N_{\mathrm{coll}} \rangle / \sigma_{nn}^{\mathsf{inel}}}}_{\langle T_{\mathsf{A}\mathsf{A}} \rangle} \frac{1/N_{\mathsf{ev}}^{AA} dN_{AA} / dp_T}{d\sigma_{pp} / dp_T}$$

 R_{AA} can deviate from unity because:

- nPDF effects (different quark/gluon abundances).
- Parton rescattering (medium-induced energy loss).
- Geometry and event selection bias. Loizides, Morsch (2017) [1]
- Extrapolation of *pp* reference spectrum. Atlas (2016) [2]

 $\langle T_{AA} \rangle$ – model dependent quantity.

Soft physics assumptions in R_{AA} normalization

Nuclear overlap function $\langle T_{AA} \rangle = \frac{\langle N_{coll} \rangle}{\sigma_{nn}^{inel}}$ is the ratio of *model-dependent quantities* number of binary collisions $\langle N_{coll} \rangle$ inelastic nucleon-nucleon cross-section $\sigma_{nn}^{\text{inel}}$

This way nominally high- p_T observable R_{AA} depends on soft physics assumptions.

Inclusive hadron (jet) nuclear modification factor R_{AA}

 $\langle T_{AA} \rangle$ can be replaced with *experimentally measurable* beam luminosity.

$$R^{h,j}_{\rm AA,\ min\ bias}(p_T) = \frac{1}{A^2} \frac{d\sigma^{h,j}_{\rm AA}/dp_T}{d\sigma^{h,j}_{pp}/dp_T}, \quad A - {\rm the\ nucleon\ number}$$

- Only applicable to minimum bias AA measurements¹.
- Requires van der Meer scan to determine absolute AA luminosity.
- System size (multiplicity) controlled by nuclei species and collision energy.
- Light nuclei collisions \implies precision studies of system size dependence.

Unique opportunity of complementary measurements of ${}^{16}_{8}$ O at the LHC and RHIC.

Aleksas Mazeliauskas

¹Theoretically can do pA, but worse cancellation of experimental uncertainties due to shifted rapidities in pp and pA.

The null hypothesis—no medium-induced energy loss

The null baseline of R_{AA} can be computed with HEP precision techniques

Factorization of jet cross-section in perturbative QCD:

$$\sigma({}^{16}_{8}\mathsf{O} + {}^{16}_{8}\mathsf{O} \to j + X) = \underbrace{\mathsf{nPDF}({}^{16}_{8}\mathsf{O})}_{\text{parton distribution functions}} \otimes \underbrace{\hat{\sigma}^{j}_{ab}}_{\text{hard partonic cross section}}$$

■ (n)PDF – process-independent, non-perturbative, fixed by data.

• $\hat{\sigma}_{ab}$ – universal, perturbative and systematically improvable (LO, NLO, ...). We will calculate jet and hadron no-energy-loss baseline at next-to-leading order

$$R_{\mathsf{AA, \min bias}}^{h,j}(p_T) = \frac{1}{A^2} \frac{d\sigma_{\mathsf{AA}}^{h,j}/dp_T}{d\sigma_{pp}^{h,j}/dp_T} = \frac{\textcircled{R}}{16^2 \times \textcircled{R}}$$

Deviation from the baseline \implies medium induced energy loss.

Minimum-bias jet R_{AA}^{j} (no energy loss) in OO at $\sqrt{s_{NN}} = 7 \text{ TeV}$

We calculated partonic jet cross-sections with NNLOJET code. HKMPSW (2020) [6, 7] $\mathcal{O}(5\%)$ baseline deviation from unity.

- Cancelation of scale, hadronization and proton PDF uncertainties.
- $\mathcal{O}(2-7\%)$ oxygen nPDF uncertainties
- Additional pPb di-jet data reduces nPDF uncertainties Eskola et al. (2019) [8].

We achieved $\mathcal{O}(1-4\%)$ accuracy in the no-energy-loss jet baseline.

We also performed NLO calculations of inclusive hadron R_{AA} with INCNLO code.

Aleksas Mazeliauskas

Minimum-bias hadron R_{AA}^h in OO at $\sqrt{s_{NN}} = 7 \text{ TeV}$ and $\sqrt{s_{NN}} = 200 \text{ GeV}$

We constructed plausible energy loss signal from 12 models fitted to AA data.

Measurable energy loss signal in $10 \text{ GeV} < p_T < 50 \text{ GeV}$ region at the LHC.

Aleksas Mazeliauskas

Hadron and nuclear modification factors at $\sqrt{s_{NN}} = 200 \,\text{GeV}$

- For hadron $R_{\rm AA}$ preferred range $5\,{\rm GeV} < p_T^h < 15\,{\rm GeV}$
- For jet R_{AA} preferred range $p_T^j < 25 \,\mathrm{GeV}$

Aleksas Mazeliauskas

11 / 17

Physics opportunities with high-statistics ion runs

Heavy quark production and energy loss in high-energy collisions

- Heavy quarks $m_{c,b} \gg \Lambda_{QCD}$ \implies short-distance perturbative production.
- Scattering with Quark Gluon Plasma \implies long-distance gluon radiation $c \rightarrow cq$
- Observed modification of p_T spectra \implies heavy flavour quenching

Colinear splitting $g \to c\bar{c}$ in parton shower

Factorization in the colinear limit

the number of charmed hadrons.

Modification of $\frac{1}{Q^2}P_{g \to c\bar{c}}$ calculable in the perturbative BDMPS-Z framework.

 $g \to c\bar{c}$ splitting function: $P_{g \to c\bar{c}}$

In vacuum

$$\begin{split} & \underset{k_{\bar{c}}^{z} = (1-z)E_{g}}{E_{g}} \qquad \left(\frac{1}{Q^{2}}P_{g \to c\bar{c}}\right)^{\mathsf{vac}} = \frac{1}{Q^{4}2z(1-z)}(m_{c}^{2}+\kappa^{2}[z^{2}+(1-z)^{2}]) \\ & \text{where } \kappa = \frac{1}{2}(\mathbf{k}_{c}-\mathbf{k}_{\bar{c}}) \\ & \text{In medium } P_{g \to c\bar{c}} \text{ is modified (correct up to } \mathcal{O}(\frac{1}{N_{c}^{2}})) \\ & \left(\frac{1}{Q^{2}}P_{g \to c\bar{c}}\right)^{\mathsf{tot}} = \Re \mathfrak{e} \frac{1}{4E_{g}^{2}z(1-z)} \int_{t_{\mathsf{init}}}^{t_{\infty}} dt \int_{t}^{t_{\infty}} d\bar{t} \, e^{i\frac{m_{c}^{2}}{2E_{g}z(1-z)}(t-\bar{t})} \int d\mathbf{r}_{\mathsf{out}} \\ & \times e^{-\frac{1}{2}\int_{\bar{t}}^{\infty} d\xi \, n(\xi) \, \sigma_{3}(\mathbf{r}_{\mathsf{out}},z)} \, e^{-i\,\kappa\cdot\mathbf{r}_{\mathsf{out}}} \left[m_{\mathsf{c}}^{2} + \frac{\partial}{\partial\mathbf{r}_{\mathsf{init}}} \cdot \frac{\partial}{\partial\mathbf{r}_{\mathsf{out}}} \left[z^{2} + (1-z)^{2}\right]\right] \underbrace{\mathcal{K}\left[\mathbf{r}_{\mathsf{in}},t;\mathbf{r}_{\mathsf{out}},\bar{t}\right]}_{t_{\mathsf{init}}} \end{split}$$

momentum at the vertex path integral of HO

In the multiple soft scattering approximation

$$n(\xi)\sigma_3(\mathbf{r}_{out},z) = \frac{1}{2}C_F\hat{\bar{q}}(1-\frac{9}{4}z(1-z))\mathbf{r}_{out}^2$$

Broadening and enhancement of $c\bar{c}$ pairs

We observe enhancement of the splitting function over wide phase-space.

Medium-induced charm meson production inside jets

- Consider the fraction of jets with D^0, \overline{D}^0 pairs \Rightarrow contains $g \rightarrow c\overline{c}$ splitting.
- Reweight each $g \to c\bar{c}$ splitting \Rightarrow explore range of \hat{q} values for for PbPb.

$$1\,{\rm GeV}^2 \lesssim C_F \hat{\bar{q}}L \lesssim 8\,{\rm GeV}^2, L=4\,{\rm fm}$$

10-40% enhancement of $D^0 \bar{D}^0$ tagged jets \Rightarrow novel test of BDMPS-Z picture.

Medium-induced charm meson production inside jets

- Consider the fraction of jets with D^0, \overline{D}^0 pairs \Rightarrow contains $g \rightarrow c\overline{c}$ splitting.
- Reweight each $g \to c\bar{c}$ splitting \Rightarrow explore range of \hat{q} values for for PbPb.

$$1\,{
m GeV}^2 \lesssim C_F \hat{ar{q}}L \lesssim 8\,{
m GeV}^2, L=4\,{
m fm}$$

10-40% enhancement of $D^0 \overline{D}^0$ tagged jets \Rightarrow novel test of BDMPS-Z picture.

Aleksas Mazeliauskas

Conclusions

Summary:

- Oxygen collisions at LHC and RHIC provide unique discovery opportunities.
- nPDF uncertainties \implies dominant source of theory uncertainties.
- Medium modification enhances $g \to c\bar{c}$ splitting.

Open questions

- Will sPHENIX measure absolute luminosity for light ions?
- How can sPHENIX contribute to constraining nPDF uncertainties (pO, pAr)?
- Is there feasibility to measure double heavy-flavour tagged jets?

If observed in OO, jet quenching will be clear signal of high- p_T partonic rescattering affecting high momentum observables in a system just a few times larger than pp.

Bibliography I

- Constantin Loizides and Andreas Morsch. Absence of jet quenching in peripheral nucleus-nucleus collisions. *Phys. Lett.*, B773:408–411, 2017, 1705.08856.
- [2] Measurement of charged particle spectra in pp collisions and nuclear modification factor $R_{\rm pPb}$ at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector at the LHC. 9 2016.
- [3] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci., 57:205–243, 2007, nucl-ex/0701025.
- [4] Kari J. Eskola, Ilkka Helenius, Mikko Kuha, and Hannu Paukkunen. Shadowing in inelastic nucleon-nucleon cross section? *Phys. Rev. Lett.*, 125(21):212301, 2020, 2003.11856.
- [5] Florian Jonas and Constantin Loizides. Centrality dependence of electroweak boson production in PbPb collisions at the LHC. 4 2021, 2104.14903.
- [6] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann. Discovering Partonic Rescattering in Light Nucleus Collisions. *Phys. Rev. Lett.*, 126(19):192301, 2021, 2007.13754.
- [7] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann. Predicting parton energy loss in small collision systems. *Phys. Rev. C*, 103(5):054903, 2021, 2007.13758.
- [8] Kari J. Eskola, Petja Paakkinen, and Hannu Paukkunen. Non-quadratic improved Hessian PDF reweighting and application to CMS dijet measurements at 5.02 TeV. *Eur. Phys. J. C*, 79(6):511, 2019, 1903.09832.

Bibliography II

- [9] Petja Paakkinen. Light-nuclei gluons from dijet production in proton-oxygen collisions. *Phys. Rev. D*, 105(3):L031504, 2022, 2111.05368.
- [10] Rabah Abdul Khalek, Rhorry Gauld, Tommaso Giani, Emanuele R. Nocera, Tanjona R. Rabemananjara, and Juan Rojo. nNNPDF3.0: Evidence for a modified partonic structure in heavy nuclei. 1 2022, 2201.12363.
- [11] Kari J. Eskola, Petja Paakkinen, Hannu Paukkunen, and Carlos A. Salgado. EPPS21: A global QCD analysis of nuclear PDFs. 12 2021, 2112.12462.
- [12] P. Duwentäster, L. A. Husová, T. Ježo, M. Klasen, K. Kovařík, A. Kusina, K. F. Muzakka, F. I. Olness, I. Schienbein, and J. Y. Yu. Impact of inclusive hadron production data on nuclear gluon PDFs. *Phys. Rev. D*, 104:094005, 2021, 2105.09873.
- [13] Peter Brockway Arnold. Simple Formula for High-Energy Gluon Bremsstrahlung in a Finite, Expanding Medium. Phys. Rev. D, 79:065025, 2009, 0808.2767.
- [14] Vardan Khachatryan et al. Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{\rm N \, N}} = 5.02$ TeV. JHEP, 04:039, 2017, 1611.01664.
- [15] ALICE physics projections for a short oxygen-beam run at the LHC. May 2021.
- [16] David d'Enterria, Kari J. Eskola, Ilkka Helenius, and Hannu Paukkunen. Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders. *Nucl. Phys. B*, 883:615–628, 2014, 1311.1415.

Bibliography III

- [17] Marco Bonvini. Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders. Eur. Phys. J. C, 80(10):989, 2020, 2006.16293.
- [18] Claude Duhr, Alexander Huss, Aleksas Mazeliauskas, and Robert Szafron. An analysis of Bayesian estimates for missing higher orders in perturbative calculations. JHEP, 09:122, 2021, 2106.04585.
- [19] Kari J. Eskola, Petja Paakkinen, Hannu Paukkunen, and Carlos A. Salgado. EPPS16: Nuclear parton distributions with LHC data. *Eur. Phys. J.*, C77(3):163, 2017, 1612.05741.