Opportunities for bulk physics with sPHENIX

Ron Belmont University of North Carolina at Greensboro

sPHENIX RBRC Workshop 20–22 July 2022

Introduction

- What is bulk physics?
 - -Event characterization
 - —Hadron yields
 - —Momentum spectroscopy (at low p_T)
 - -Flow observables
 - -Correlations (an overly broad category that means many different things)
- What is not bulk physics?
 - -Heavy flavor production (both open and closed HF)
 - —Jet spectroscopy
 - —Jet structure measurements
 - -Id est "the stuff that sPHENIX was built to measure"
- Where do the two meet?
 - -Heavy flavor flow
 - ${\rm Jet}/{\rm bulk} \ {\rm comparisons}$
 - —Jet v_n
- NB none of these is meant to be an exhaustive list

sPHENIX

sPHENIX

MBD & sEPD

Minimum Bias Detector (MBD) [$3.51 < |\eta| < 4.61$]

- Reuse of the PHENIX Beam-Beam Counter
- 128 channels of 3 cm thick quartz radiator on mesh dynode PMT
- 120 ps timing resolution

sPHENIX Event Plane Detector (sEPD) [2.0 < $|\eta|$ < 4.9]

- 1.2-cm-thick scintillator w/ wavelength shifting fibers
- 2 wheels of 12 sectors with 31 optically-isolated tiles
 = 744 channels
- Provides significant improvement in the event plane resolution

Hideki Okawa

Strange Quark Matter 2022

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	$3.7~(5.7)~{ m nb}^{-1}$	4.5 (6.9) ${\rm nb}^{-1}$
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	p^{\uparrow} +Au	200	-	5	$0.003 \ \mathrm{pb^{-1}}$ [5 kHz]	$0.11~\mathrm{pb}^{-1}$
					$0.01~{ m pb}^{-1}~[10\%$ -str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb^{-1}	21 (25) nb^{-1}

- Year 1 provides >25 billion events of Au+Au
 - —Year 1+3 provides > 114 billion events (and up to 141 billion)
- Year 2 provides >5 billion events of p+Au (hopefully 17 billion)

Correlations

- There are many different kinds of correlations, including ones that are squarely in the realm of hard physics
- Very roughly, there are three categories
 - -Multiplicity correlations
 - -Momentum correlations
 - —Angular correlations
- Since sPHENIX will probably not have PID certain kinds of correlations won't be possible, e.g. femtoscopy
- $\bullet\,$ Most of the correlations that sPHENIX can do can also be done, and have been done, by STAR
- The main advantage with sPHENIX is the very high statistics; secondarily, different systematics because of different detector design may be of some benefit

The ridge

Extended structure away from near-side "jet" peak interpreted as collective effect due to presence of QGP

- First discovered by STAR in Au+Au in 2004 (PRC 73, 064907 (2006) and PRL 95, 152301 (2005))
- Realized by STAR to be flow in 2009 (PRL 105, 022301 (2010))
- First found in small systems by CMS (JHEP 1009, 091 (2010) and PLB 718, 795 (2013))

Balance functions

- The balance function gives the correlation of pairs produced via local charge conservation
- There are many different ways of measuring it, some of them "accidental"
 - -S. Schlichting and S. Pratt, Phys. Rev. C 83 (2011) 014913
 - -S.A. Voloshin and R. Belmont, Nucl. Phys. A 931 (2014) 992-996

R. Belmont sPHENIX RBRC Workshop, 20–22 July 2022 - Slide 9

Flow observables

• sPHENIX can measure $v_2\{2,4,6,8\}$ with very high precision —Roughly, $v_2\{2\} = \sqrt{v_2^2 + \sigma^2}$ and $v_2\{4,6,8\} \approx \sqrt{v_2^2 - \sigma^2}$

—Deviations of ratios from unity give insights into higher moments of v_2 distribution

• Can definitely measure v_2 {10}, but not clear (yet) what level of sensitivity can be obtained

PHENIX, Phys. Rev. C 99, 024903 (2019)

- You can do a lot with ${\sim}1$ billion events...
- \bullet ...so you can do a lot more with ${>}25$ billion events!

- Previous observation of interesting rapidity dependence of $v_3\{4\}$ comparing STAR $|\eta|<1$ and PHENIX $1<|\eta|<3$
- Can obviously do measurement with central barrel $|\eta|<$ 1.1, but maybe also with sEPD to get more information about rapidity dependence 2.0 $<|\eta|<$ 4.9

• NSC(n,m) gives correlations between n-th and m-th harmonics

• sPHENIX can improve these with more statistics, add higher harmonics, etc

- Pretty big opportunity to get a really nice measurement of cumulant v_2 in p+Au
- In the PHENIX measurement $(1 < |\eta| < 3)$ we see the higher moments swamp the mean, so that the cumulant is positive (and the v_2 {4} is complex-valued)
- ullet The situation is different for sPHENIX, which will measure at midrapidity $|\eta|<1.1$

PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

• v_2 vs η in p+Al, p+Au, d+Au, and ³He+Au

• Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))

PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

• v_2 vs η in p+Al, p+Au, d+Au, and ³He+Au

- Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))
- Prevalence of nonflow near the EP detector $(-3.9 < \eta < -3.1)$

PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

• v_2 vs η in p+Al, p+Au, d+Au, and ³He+Au

- Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))
- Prevalence of nonflow near the EP detector $(-3.9 < \eta < -3.1)$

PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

• Need to know $v_3(\eta)$ for a lot of reasons, but very hard to measure...

PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

- Need to know $v_3(\eta)$ for a lot of reasons, but very hard to measure...
- However, combination of the sEPD and central barrel make this very promising for sPHENIX!

- $dN_{ch}/d\eta$ from AMPT, $v_3(\eta)$ from (super)SONIC
- Can use the sPHENIX central barrel ($|\eta| < 1.1$) and sEPD (2.0 < $|\eta| < 4.9$, finely segmented into 16 rings) to make a broad measurement —Still very challenging, but too important to overlook

Flow decorrelation measurements

- Detailed studies of "flow factorization" as a function of p_T use reference particles in a broad p_T range and associate particles in a specific p_T bin
- Observable A_n^f for angular decorrelation

$$egin{aligned} &A_n^f = rac{\langle &\cos(n(\phi_1^a + \phi_2^a - \phi_3 - \phi_4))
angle
angle}{\langle &\cos(n(\phi_1^a + \phi_2 - \phi_3^a - \phi_4))
angle
angle} \ &= rac{\langle v_n^2(p_T^a) v_n^2 \cos(2n(\psi_n(p_T^a) - \psi_n))
angle}{\langle v_n^2(p_T^a) v_n^2
angle} \ &= \langle &\cos(2n(\psi_n(p_T^a) - \psi_n))
angle
angle w ext{wight} \end{aligned}$$

• The first order decorrelation can't be calculated directly, but there's an inequality

$$\sqrt{rac{A_n^f+1}{2}} \geq \langle \cos(n(\psi_n(p_T^a)-\psi_n))
angle$$

Flow decorrelation measurements

- Can see that "flow factorization" doesn't hold as a function of p_T
- A multi-differential four-particle correlation is extremely statistics-hungry
- The massive integrated luminosity in Au+Au to be collected by sPHENIX provides a huge opportunity to do this kind of study at RHIC energies

Where the hard and soft sectors meet

- Jet v_n originates from path-dependent differential energy loss, which is not bulk physics
- But the global event shape, which is bulk physics, determines the path length
- Interesting potential caveat: how does p_T-dependent flow angle decorrelation affect our interpretation of jet v_n?

Balance functions inside of jets

Charge dependent balance functions in jets

j_{7,3}

θ

ക്

Ð,

Pratt et. al PRL 2000

Thanks to Raghav Kunnawalkam Elavavalli

- Requirements tracks, charge identification up to relatively high pT
- p_T > 25 GeV jets at RHIC are mostly guark dominated and so start with a charge \rightarrow charge dependent balance functions study the distribution of particles from the iet quenching wake around the jet

an'

Heavy flavor flow

- Charm seems to flow like light quarks
- What about bottom?
- Measurements of D- and B-meson flow in sPHENIX will yield key insights $-v_3$ may be particularly important (can use sEPD)

- Plenty of opportunities for really interesting physics in the soft sector
- Some interesting cross-talk between the hard and soft sector, in "obvious" but also in potentially subtle ways
- Hard physics is the chocolate chips and soft physics is the batter: you need both to make the cookie

