Electromagnetic Barrel Calorimetry

Tanja Horn

The Catholic University of America / Jefferson Lab

Introduction

Scattered electron kinematics measurement is essential at the EIC

- High precision, hermetic detection of the scattered electron is required over a broad range in η. Particularly in the backwardgoing direction over an energy range from 0.1 to tens of GeV
- □ In ECCE, we emphasize this also for the barrel EM calorimeter choice driven by high-x and high-Q² science drivers.
- Scintillating glass was chosen to provide comparable energy resolution to PbWO4 crystals at significant lower cost

From Yellow Report

Requirements Good energy resolution e/h separation up to 10⁻⁴

e/π SEPARATION

NEEDS

 ΔG needs pi/e 10⁻³, A_{PV} needs pi/e 10⁻⁴ in η bins -2 to 1

10 x 100 GeV Pion/e- Ratio (Work by Hanjie Liu)

3rd EIC Yellow Report Workshop (CUA), Sept 2020

The barrel EMCal in the ECCE Reference Detector

Barrel ECAL(BEMC)

Homogeneous, projective calorimeter based on SciGlass, cost-effective alternative to crystals

5.34 m

- The barrel is one of the largest sub-detectors with 8000 homogeneous scintillator blocks of 45.5cm length (and ~10cm radial readout space)
- It is extended in the negative rapidity direction (with η coverage from -1.7 to +1.3) to provide hermeticity with the backward ECal.
- In the backward direction hermeticity is provided by the combination of barrel, backward ECals, and mRICH complements (3σ e/h up to 2 GeV). Readout and supply lines are included.
- In the forward direction the barrel EMCal faces much higher range of particle rates across the acceptance of the forward endcap

Overview of Barrel EMCal Specifications

 \Box Coverage: -1.7 < η < 1.3

- R_{min}=80cm
- R_{max} =125.5cm (i.e., glass blocks are 45 cm long \rightarrow 17 X0)
- Electronics:125.5cm < R < 134cm</p>
- Outer support: 134cm < R < 140cm
- Length along z= 445m (192.5cm(start) < z < 252.5cm (end))</p>

□Egamma: 0.1 – 35 GeV

Energy resolution (based on simulation): 2.5%/SqrtE + 2.7%/E + 1.5%

□ Maximum Annual dose at top luminosity

- EM: ~3 krad/year (30 Gy/year)
- Hadron: 10^10 n/cm2

□ Signal dynamics: 2 V dynamic range

Homogeneous Design based on PANDA

Figure 5.4: Crystal arrangement of the barrel along the beam axis. Positions of the different crystal types are indicated. Due to the mirror symmetry, 11 types are sufficient instead of 18.

Figure 5.5: View of the total barrel volume with a separated single slice of 710 crystals. A slice covering 1/16 of the barrel volume.

Homogeneous materials: Crystals and Glass

- □ High-resolution PbWO₄ (PWO) crystals are available from two vendors
- SciGlass 20cm has been produced reliably; We tested a 3x3 20 cm SciGlass prototype detector in beam and measured its performance as per simulation (ongoing R&D EEEMCAL consortium, eRD105)
- □ Received the first polished 40 cm SciGlass with more on the way
- □ We have an SBIR phase-II to start large-scale production (40+ cm, rectangular and projective shapes)

Example: G4 glass

Previous Scintillating Glass Calorimeters

Scintillating Glass of different formulation has been used for beam tests and as EMCal in the 1980s https://inspirehep.net/literature/261664

Performance of a scintillating glass calorimeter for electromagnetic showers, 1988

https://inspirehep.net/files/1299a6aa1e200e01f9d7f208800a81f6

The Experiment 705 Electromagnetic Shower Calorimeter, 1993

15.x15.x89 cm^3 7.5x7.5x89 cm^3

Rad. Length 20.9 X0

0.99%+4.58%/sqrt(E)

Resolution for mixed calorimeter (lead glass and SCG1-Glass) Results from 1980s scintillating glass calorimeters encouraging → Need to establish performance for SciGlass (different formulation)

Ongoing Beam Tests

 Prototype 3x3 array installed and tested – energy resolution measured for three different beam energies
Promising results for ~7 X₀ blocks – matches with Geant4
Plans for 2022: Test with ~15X₀ long blocks

Barrel EMCal in Simulations

CCE simulation CCE simulation

- □ Implemented with the active components and support structures
- Also important to consider materials in front of the EM calorimeter as it impacts performance (resolution, rejection, etc.)

Barrel EMCal Performance

Exceeds requirements from Yellow Report

Mechanical Design based on PANDA

Figure 5.26: Dimensions of one slice.

Advancing the Design (making use of work already done at PANDA)

On the forward side, the dRICH, Forward AC-LGAD, tracking detectors, Barrel AC-LGAD, and (optionally) the DIRC bars and Barrel GEM detector can be extracted for maintenance.

Slice/supermodule details – also cooling, cabling, etc.

Ongoing studies (CUA/MIT)

□ Support structure optimization

Ongoing studies (MIT)

 $\hfill\square$ Access and maintenance

Advancing the Design – barrel support structure

Barrel ECAL support FEA analysis (Avishay Mizrahi, MIT)

BEMC Institutional Interest

Region	System	Technology	Institutions	Experience / Co	mments	Region	System	Technology	Institutions	Experience / Comments	
Forward Endcap (Hadron direction)	Tracking	ITS-3 Si Disks	LANL, LBL, ORNL, MIT/BATES, EIC- China, EIC-Taiwan, EIC-Korea, Brunel (UK), Regina (Canada), Czech. Tech. Univ., BNL	Experience constru previous Si tracker recently for sPheni	icting s, most x.	Endcap tion)	Tracking	ITS-3 Si Disks	LANL, LBL, ORNL, MIT/BATES, EIC- China, EIC-Taiwan, EIC-Korea, Brunel (UK), Regina (Canada), Czech. Tech. Univ., BNL	Experience constructing previous Si trackers, most recently for sPhenix.	
		AC-LGAD	RICE, ORNL, BNL, UTSM	Experience in CMS				AC-LGAD	RICE, ORNL, BNL, UTSM	Experience in CMS	
	PID	dRICH	UConn, Duquesne, Duke, JLab, Tsinghua/China	E&D (strong engine Simulations (Hall B A/SBS RICH), HERM	eering) RICH, Hall 1ES RICH	Backward (e [.] direc		mRICH	GSU, JLab	GSU originated mRICH concept and led its design Experience with crystal	
	EM Calorimetry Hadron Calorimetry	Longitudinally segmented, scintillating tile	ORNL, ISU, Ohio U., EIC-Japan, EIC-Korea, EIC-China, BNL	Experience with calorimeters in sPHENIX and ALICE		-	EM Calorimetry	PbWO4	AARU/Armenia, CUA, Charles U./Prague, FIU, IJCLab- Orsay/France, JLab, JMU, MIT, Lehigh U., UKY, Ohio U.	characterization, detector design and construction, technical support and infrastructure, readout electronics, simulations (Hall C EMCal & NPS, STAR ECAL)	
Barrel	Tracking	ITS-3 Si	LANL, LBL, ORNL, MIT/BATES, EIC- China, EIC-Taiwan,	ANL, LBL, ORNL, IIT/BATES, EIC- hina, EIC-Taiwan, IC-Korea, Brunel JK), Regina canada), Czech. ech. Univ., BNL VA, GWU, MIT, EIC- hina, EIC-Korea, BNL GEM construction for SBS; µRWell prototyping and testing at Fermilab		ing most r SBS; and	во	AC-LGAD Tracking PWO4	UH, U. Kansas	ZDC at LHC, Roman Pots, fast timing	
		(vertex & sagitta)	EIC-Korea, Brunel (UK), Regina (Canada), Czech. Tech. Univ., BNL				Off- momentum Detectors	Calorimeter AC-LGAD Tracking	UH, U. Kansas	Fast timing, tracking experience at RHIC, LHC	
		μRWell	UVA, GWU, MIT, EIC- China, EIC-Korea, BNL				Roman Pots	AC-LGAD Tracking	IJCLab-Orsay/France, BNL, UH, U. Kansas, BNL	ASIC readout of AC-LGAD (OMEGA, ATLAS)	
		AC-LGAD	RICE, ORNL, BNL, UTSM	Experience in CMS	CMS		ZDC	PWO, W/Si, Pb/Si, Pb/Sci	EIC-Japan, KU	Experience with LHCf, RHICf development of FOCAL	
	PID	hpDIRC	CUA, GSI, ODU, W&M, MIT/BATES	Design and constru (PANDA, GlueX), si	uction mulations		Low-O ²	AC-LGAD Tracking	York U. Glasgow U.	Experience from CLAS12 tagger	
	Cal	EM orimetr	C A SciGlass F		CUA Aug UC I Reg	CUA, MIT, KU, Augustana, Ohio U., UC Boulder, UIUC, U. Regina			Glass fabrication and characterization, detecto design and construction, technical support, simulations		
						DAQ, Comput	Streaming DA	AQ, Online Event Filter	Morehead state, ORNL, PNNL, SBU, UC Boulder, UConn	streaming DAQ; CMS and GlueX computing	

Figure 4.2: Planed responsibilities of the ECCE institutions for the production of different detector sub-systems.

Barrel EMCal Complementarity

Pi0 merging fraction

- ECCE emphasized electron detection from YR requirements
- Jet measurements might benefit from good 1photon/pi0 separation
- A good reason for 2 complementary EIC detectors

REFERENCE

- ECal as main actor
- Complemented by Cherenkov detectors
 - Backward, mRICH : e/π separation 3 σ up to 2 GeV/c
 - Forward, dRICH: e/π separation 3 σ up to 15 GeV/c
 - Barrel: no support from reference detector (DIRC)

$\pi\pm$ rejection with E/p cut

ECal

studies

ABOUT π SUPPRESSION REQUIREMENTS

4th Yellow Report Workshop, Berkley, 19-21 November 2020

S. Dalla Torre (INFN Istituto Nazionale di Fisica Nucleare 10