APRIL 27, 2022

BARREL CALORIMETER II

Maria ŻUREK, Argonne National Laboratory

Argonne (75 1946-2021

EIC Calorimetry Requirements Barrel CAL in EIC Yellow Report

EIC Community outlined physics, detector requirements, and evolving detector concepts in the EIC Yellow Report.

EIC Yellow Report requirements for barrel ECal

- Detection of electrons/photons to measure energy and position
- Require moderate energy resolution $(10 12) \% / E \oplus (1 3) \%$
 - But! With high electron-pion separation at low momenta.
- Require **electron-pion separation up to 10**⁴ at low particle momenta
- Discriminate between π⁰ decays and single photons from DVCS
- Low energy photon reconstruction ~100 MeV

The main functionality of barrel and negative hadron calorimeters

- In the mid-rapidity region, the functionality of hadron calorimeters is driven by a single jet measurements.
- Neutral hadron isolation could also be important for jet energy scale and resolution
- Assist in **detection and isolation** of neutral hadrons, in combination with information from EMCals, tracking and PID detectors.

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DETECTOR GEOMETRY ATHENA Barrel ECal

https://anl.box.com/s/w5i3e7cmzgznnl1qyjukuhspsn87zwhe

- Hybrid concept
 - Imaging calorimetry based on monolithic silicon sensors AstroPix (NASA's AMEGO-X mission)
 - Scintillating fibers embedded in Pb (Pb/ScFi - Similar to GlueX Barrel ECal) Nuclear Inst. and Methods in Physics Research. A 896 (2018) 24-42
- 6 layers of imaging Si sensors interleaved with 5 Pb/ScFi layers and followed by a large chunk of Pb/ScFi section
- Total radiation thickness of 20 X₀
- Detector coverage: -1.5 < η < 1.2 which overlaps with "electron-going" side endcap

3

Imaging layer – Position info Pb/ScFi layer – Energy info

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Argonne 🐴 | 75

Hadronic calorimetry in the ATHENA barrel Combined approach: bECal Pb/SciFi and Fe/Scint tail catcher

- Outer region of bECal serves as inner HCal (inside the magnet), with decent energy resolutions for hadrons from the BECAL Pb/ScFi layers
- Dedicated bHCal tail catcher sits outside the magnet:
 - Five-layer steel and scintillator sandwich, re-using the scintillation mega-tiles from the STAR bECal
 - Design for the backward HCal similar to the barrel HCal
 - Re-using STAR components (steel, cradles, mega-tiles) significantly reduces cost
- bHCal is relatively shallow, only needed to instrument ~2 interaction lengths (λ₁):
 - ATHENA magnet ~ $1.3\lambda_1$ precludes good energy measurement of hadrons
 - ATHENA bECal ~ $1-1.7\lambda_1$ deep
 - \circ 2 λ_1 contains 95% of hadronic showers
 - remaining space used for flux-return steel bars from the STAR magnet

4

Hadronic calorimetry in the ATHENA barrel Combined approach: bECal Pb/SciFi and Fe/Scint tail catcher

What is the efficiency of neutron detection for

- one interaction length EMcal,
- 1.3 interaction length magnet between EMCal and HCal
- sandwich Fe/Sc HCal tail catcher.

Figure 6. Efficiency of registration of neutrons in bECal and bHCal as a function of neutron energy.

Energy resolution of combined EMCal+HCal systems for pions in the energy range 1-10 GeV for different thickness of EMcal with and without dead material

Generatives of the second seco

5

Imaging Layers in Barrel ECAL

Excellent position resolution allowing precise 3D shower imaging

6

Significantly improved **electron/pion separation** with respect to E/p method

 Impact on DIS cross section and asymmetries

Separation of γ s from π^0 decays at high momenta up to ~40 GeV/c. Precise position reconstruction of γ s (below 1 mm at 5 GeV).

• Impact on DVCS and photon physics

Provides a **space coordinate for DIRC** reconstruction (no need for additional large-radius tracking detector)

- Improving PID for SIDIS and beyond
- Improved tracking resolution for high-momentum particles

Tagging **final state radiative photons** from nuclear/nucleon elastic scattering at low x to **benchmark QED internal corrections**

Imaging layers provide:

• precise measurement of photon coordinates and the angle between electron and photon

Allowing PID of **low energy muons** that curl inside the barrel ECal (< 1.5 GeV with 3T MF)

• Impact on J/psi reconstruction, TCS

PERFORMANCE STUDIES

Detector Setup and Reconstruction

 Full simulations within the ATHENA detector geometry

- R_{Calo} = 103 cm

- Single particle generators (Geant4)
- Full reconstruction process
 - Digitization
 - Reconstruction
 - Clustering
- In simulations: we explore the possibility of using the AstroPix sensor off-the-shelf

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 7

ENERGY RESOLUTION

The main role of the Pb/ScFi Layers

SPATIAL RESOLUTION

The main role of the Imaging Layers

Cluster level: $\sigma_{\text{spatial}} = (2.32 \pm 0.06) \text{mm}/\sqrt{E} \oplus (1.4 \pm 0.02) \text{mm} \quad @ \eta = 0$ With first layer hit position on top of cluster level: $\sigma_{\text{spatial}} = 0.5 \text{mm}$ (i.e. pixel size)

ELECTRON IDENTIFICATION

$e - \pi$ separation

• Separation of electrons from background π in Deep Inelastic Scattering (DIS) processes

DVCS SINGLE PHOTON AND $\pi^0 \rightarrow \gamma \gamma$ DECAY

π^0 reconstruction

- π^0 background to Deeply Virtual Compton Scattering (DVCS)
 - High momentum $\pi^0 \rightarrow \gamma \gamma$ can not be distinguished from each other
 - Detector can miss the low energy photon coming from π^0 decay

MUONS IN BARREL

- Muon/pion separation in **central region** determined from information from the **Barrel ECal** and **HCal**
- Results for single particle simulation, see details in the following slides

- At η = 0: muons >~1.5 GeV/c reach HCal, and <~1.5 GeV/c curl inside the BCal (different approach to analysis)
 This discontinuity (in reaching HCal) is rapidity dependent
- Neural Network studies in ECal done for $\eta = (-1, 1)$, ECal+HCal studies and E/p studies in ECal done for $\eta = 0$
- Further improvements to muon/pion separation from PID detectors expected (DIRC)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

SUMMARY AND OUTLOOK

Hybrid Imaging ECAL calorimeter proposed for the future Electron-Ion Collider

- Scintillating fibers embedded in Pb and imaging calorimetry based on silicon sensors (AstroPix)
- Meets and further improves EIC Yellow Report requirements
 - Excellent Energy and Spatial resolution
 - Electron-pion separation at low particle-momenta
 - Separation of two gammas from neutral pion up to 45 GeV
- Beamtests and prototyping
 - AstroPix v2 sensor beamtests in Fermilab (in Feb and planned in April 2022)
 - A few AstroPix v2 sensors in multilayer configuration tested as a tracker
 - Plans for calorimeter prototype with radiator/ScFi/Pb layers

Hadronic calorimetry in the ATHENA barrel

- Combined approach: bECal Pb/SciFi and Fe/Scint tail catcher
- Re-using STAR components (steel, cradles, mega-tiles)

BILLS DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

